紅外弱小多目標實時處理
[Abstract]:Infrared imaging technology is widely used in civil and military fields because of its good concealment, strong anti-interference ability and all-weather work. However, the imaging distance of infrared small and weak targets is long and the background clutter interference is serious, which makes the imaging signal-to-noise ratio (SNR) low and the structure information insufficient. The research of weak and small target detection and weak small target tracking method has become the key to infrared small and weak multi-target real-time processing technology, and plays a key role in infrared guidance and other fields. This paper takes the actual scientific research project as the research background, based on FPGA DSP architecture to realize the design and optimization of infrared image real-time processing method. The background clutter and noise interference of infrared weak and small multi-target image is serious, so image preprocessing is very important. Therefore, this paper adopts improved median filtering to adapt to different noise types and noise density, and changes the window shape while changing the length of sliding window. And make sure to filter with a smaller window. Based on the target and background characteristics, the improved morphological background suppression algorithm is adopted, and the fluctuating image background is extracted by the semi-circular combined structure element with scale change, and the background clutter is effectively suppressed. In the aspect of weak and small multi-target detection, combined with the point diffusion model with scale factor, the image is represented in Laplace Gao Si scale space, and the target position and size are preliminarily determined. All suspicious targets are extracted by the threshold judgment of the mean value of each direction difference, and then the real target detection is realized according to the target size combined with the difference degree of each direction. In the aspect of weak and small multi-target tracking, in order to realize reliable tracking and match the filter with different data update rate, the mean drift Kalman filter is matched to the low-speed moving target. The high maneuvering moving target matching improves the mean drift particle filter, and carries on the interactive fusion to obtain the target tracking result. In order to realize the reliable tracking of the multi-target, in order to realize the reliable tracking of the multi-target, by combining the Markov random network, Considering the state of the adjacent targets of each target, the maximum joint posterior probability of each target is estimated, the filter parameters and particle weights are updated, and the multi-target position estimation is carried out. Based on the infrared real-time image processing platform, a large number of data taken continuously by the medium-wave infrared camera with a resolution of 640 / 512 are processed in real time through the algorithm transplantation. The processing results show that in the aspect of image preprocessing, The improved median filter noise smoothing algorithm and the improved morphological background suppression algorithm used in this paper have good processing effect and real-time performance. In the aspect of multi-target detection, the proposed algorithm based on scale space has better robustness and higher detection rate than the existing algorithms, and the average processing time of a single frame is less than 5 Ms. Meet the real-time requirements of processing; In the aspect of multi-target tracking, the tracking accuracy of the multi-model improved Kalman particle filter combined with Markov stochastic network is three times higher than that of the traditional interactive multi-model algorithm, and the processing speed can reach 72 frames / S. The tracking reliability is high and the real-time performance is good. To sum up, the real-time processing method of infrared weak and small multi-target in this paper is reliable and has high practical application value.
【學(xué)位授予單位】:蘇州科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 邵學(xué)軍;計算機實時處理選票系統(tǒng)的票箱裝置[J];計算機應(yīng)用通訊;1982年01期
2 劉鍵;;分布式實時處理軟件研究的若干問題[J];計算機科學(xué);1990年03期
3 李德領(lǐng);馬潮;;嵌入式系統(tǒng)中短消息實時處理的實現(xiàn)[J];單片機與嵌入式系統(tǒng)應(yīng)用;2006年01期
4 杜光會;;國內(nèi)外零售業(yè)軟件的異同[J];信息與電腦;1998年03期
5 彭慧,樊建榮;路橋收費數(shù)據(jù)的實時處理[J];信息與控制;2001年04期
6 李在雄;無線尋呼信息的計算機實時處理[J];電子技術(shù)應(yīng)用;1996年12期
7 黃曉菁,彭東青,舒強,雷國偉;圖像相關(guān)識別器的光信號計算機實時處理[J];儀器儀表學(xué)報;2005年S1期
8 沈伯寧;單板微型計算機用于飛行數(shù)據(jù)實時處理[J];電子技術(shù)應(yīng)用;1984年03期
9 張承云,謝志文,謝菠蓀;多媒體計算機的音頻實時處理[J];電聲技術(shù);2000年01期
10 陳彥萼 ,吳勤勤 ,沈關(guān)梁;色譜定量分析數(shù)據(jù)電子計算機實時處理中的若干問題[J];華東化工學(xué)院學(xué)報;1981年04期
相關(guān)會議論文 前6條
1 呂維加;;肌電的計算機實時處理[A];第五屆全國運動生物力學(xué)學(xué)術(shù)會議論文摘要[C];1985年
2 黃曉菁;彭東青;舒強;雷國偉;;圖像相關(guān)識別器的光信號計算機實時處理[A];第三屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2005年
3 陸惠民;陳革新;張紅桔;;MT多用脈圖自動分析系統(tǒng)——醫(yī)理研究[A];中國中醫(yī)藥信息研究會第二屆理事大會暨學(xué)術(shù)交流會議論文匯編[C];2003年
4 焉德廣;龐福文;;抽取內(nèi)差器的實時處理結(jié)構(gòu)及其FPGA實現(xiàn)[A];中國航海學(xué)會通信導(dǎo)航專業(yè)委員會2004學(xué)術(shù)年會論文集[C];2004年
5 郭詠梅;毛士藝;李少洪;;SAR實時處理機中的IQ校正問題[A];第九屆全國信號處理學(xué)術(shù)年會(CCSP-99)論文集[C];1999年
6 湯小林;;實現(xiàn)在AutoCAD中對大地坐標的實時處理[A];第七屆全國礦山測量學(xué)術(shù)會議論文集[C];2007年
相關(guān)重要報紙文章 前1條
1 李國敏;共贏安全大數(shù)據(jù)[N];科技日報;2013年
相關(guān)博士學(xué)位論文 前1條
1 王俊;全數(shù)字式高分辨率SAR實時處理機研究[D];北京航空航天大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 戴菲;基于Storm的實時計算系統(tǒng)的研究與實現(xiàn)[D];西安電子科技大學(xué);2014年
2 劉Z阪,
本文編號:2493300
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2493300.html