天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

特征加權(quán)組稀疏判別投影分析算法

發(fā)布時(shí)間:2019-05-12 03:13
【摘要】:近來(lái),稀疏表示分類算法已經(jīng)在模式識(shí)別和特征提取領(lǐng)域獲得了廣泛的關(guān)注.受最近提出的稀疏表示判別投影算法啟發(fā),本文提出了一種新的特征加權(quán)組稀疏判別投影算法(Feature weighted group sparse classification steered discriminative projection,FWGSDP).首先,提出特征加權(quán)組稀疏分類算法(Feature weighted group sparsebased classification,FWGSC)進(jìn)行稀疏系數(shù)編碼,該算法采用帶特征加權(quán)約束的保局性信息,能夠魯棒地重構(gòu)給定的輸入數(shù)據(jù);其次,通過(guò)類內(nèi)重構(gòu)散度最小、類間重構(gòu)散度最大為目標(biāo)計(jì)算最優(yōu)投影判別矩陣,使得輸入數(shù)據(jù)具有最佳的模式分類效果;最后,提出迭代重約束稀疏編碼方法并結(jié)合特征分解操作進(jìn)行FWGSDP模型高效求解.在Ex Yale B,PIE和AR三個(gè)人臉數(shù)據(jù)庫(kù)的實(shí)驗(yàn)驗(yàn)證了所提算法在普通數(shù)據(jù)和帶噪數(shù)據(jù)中的分類效果都優(yōu)于現(xiàn)存的算法.
[Abstract]:Recently, sparse representation classification algorithm has received extensive attention in the field of pattern recognition and feature extraction. Inspired by the recently proposed sparse representation discriminant projection algorithm, a new feature weighted group sparse discriminant projection algorithm (Feature weighted group sparse classification steered discriminative projection,FWGSDP) is proposed in this paper. Firstly, a feature weighted group sparse classification algorithm (Feature weighted group sparsebased classification,FWGSC) is proposed for sparse coefficient coding. The algorithm adopts the local information with feature weighted constraints and can robust reconstruct the given input data. Secondly, the optimal projection discriminant matrix is calculated by the minimum intra-class reconstruction divergence and the maximum inter-class reconstruction divergence, so that the input data has the best pattern classification effect. Finally, an iterative reconstrained sparse coding method is proposed and combined with feature decomposition operation to solve the FWGSDP model efficiently. The experiments of pie and AR face databases in Ex Yale B verify that the proposed algorithm is superior to the existing algorithms in both ordinary data and noisy data.
【作者單位】: 浙江工業(yè)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;衢州職業(yè)技術(shù)學(xué)院信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61502424;61379123) 浙江省自然科學(xué)基金(LY15E050007;LY15F030014;LQ14F030003)資助~~
【分類號(hào)】:TP311.13

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張磊,韓紀(jì)慶,王承發(fā),張文祥;基于特征加權(quán)的應(yīng)力影響下頑健語(yǔ)音識(shí)別方法[J];中文信息學(xué)報(bào);2002年01期

2 秦彩云;;云模型用于特征加權(quán)及降維的算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2011年06期

3 趙中英;梁永全;紀(jì)淑娟;李超;;文本分類中改進(jìn)的特征加權(quán)方法[J];情報(bào)雜志;2009年04期

4 易云;汪廷華;;基于特征加權(quán)支持向量機(jī)的血吸蟲(chóng)尾蚴識(shí)別算法設(shè)計(jì)與應(yīng)用[J];贛南師范學(xué)院學(xué)報(bào);2012年03期

5 朱玉蓮;基于特征加權(quán)的人臉識(shí)別[J];計(jì)算機(jī)應(yīng)用;2005年11期

6 桑應(yīng)賓;劉瓊蓀;;一種基于特征加權(quán)的K Nearest Neighbor算法[J];海南大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期

7 劉端陽(yáng);陸洋;;一種有指導(dǎo)的文本特征加權(quán)改進(jìn)算法[J];計(jì)算機(jī)工程;2012年08期

8 張e,

本文編號(hào):2475059


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2475059.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶db232***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com