集值數(shù)據(jù)和社交網(wǎng)絡(luò)聯(lián)合發(fā)布中隱私保護方法研究
[Abstract]:With the rapid development and widespread use of the network, various applications have generated massive data, such as WeChat, facebook, shopping platform and so on. There is an immeasurable social and economic value between the data, such as group behavior analysis, auxiliary business decision and so on. When data is published to a data miner, the data needs to be protected by the privacy, since the data generally contains the privacy information of many users, which can easily lead to the disclosure of the privacy information, so the data privacy protection is particularly important. In recent years, data privacy protection is a popular research field, and there are many relevant research results, but the existing research is mainly for the privacy protection of single-type data. In the age of large data, data mining has been widely used, such as social network data and transactional data mining, to solve the cold start problem of the shopping recommendation system, and so on. In the case of multi-source data, the increase of the background knowledge brings new privacy problems, and the existing privacy protection method is not applicable to the joint release of multi-source data. Relative relation type data, set-valued data has the features of high dimension, sparse and so on. The privacy protection method of relational data is obviously not applicable to set-valued data, such as using the k-anonymity privacy model to protect the set-valued data, which can cause the data loss to be too large. In view of this situation, the time-uncertainty model can balance the privacy protection and information loss well, and in recent years there are many research results on the privacy protection of set-valued data based on the uncertainty. There are also many data protection models in social networking data, such as the k-degree anonymous, l-diversity, and so on, and these models meet the privacy requirements by adding or deleting edges or nodes. The protection model can protect the single-type data, but in the case of the joint release of the social network data and the set-valued data, the background knowledge is increased, so that the leakage probability of the victim information is greater than the threshold value, and the data privacy requirement is not met. Therefore, for the joint release of social network data and set-valued data, this paper proposes a packet-level-uncertainty privacy protection model. The main work is as follows: First, the existing privacy protection model of set-valued data and social network data is analyzed, and the attack model of data joint release is put forward. The existing single data type privacy protection model is not applicable to the attack model. In the case of the background knowledge of any data item in the set-valued data, the constraint-uncertainty model ensures that the probability of the sensitive data item is not more than the threshold value. The model is effective when the set-valued data is distributed separately, but in the case of a joint release with the social network, if the attacker also knows that the victim has several friends in the social application, that is, the degree of the social network data victim node, Then it is concluded that the probability of the victim in the set-valued data sensitive term is greater than the threshold value and the privacy requirement is not met. Secondly, based on the above attack model, combined with the model of the uncertainty model and the degree of anonymity, this paper puts forward the packet-uncertainty privacy protection model. First, the protection model requires a generalization tree, such as apple, bana, to be generalized to fruit based on the project properties. And then grouping the set-valued data according to the generalization tree, that is, the records of the non-sensitive items in the set-valued data have the same parent node in the generalization tree are divided into a group. Based on the uncertainty model, the model requires that each group meet the constraint-uncertainty model, and it is proved that each group meets the constraint-uncertainty model, and the whole data also satisfies the constraint-uncertainty model. And finally, grouping the nodes of the social network (consistent with the grouping of the set-valued data) and the anonymous processing in the group, so that the nodes of the social network have the same degree in the group. Therefore, under the background knowledge above, the probability of the sensitive term of the attack victim is lower than the threshold value, thus reaching the anonymous requirement. Thirdly, based on the packet-based-uncertainty privacy protection model, a privacy protection algorithm is also designed in this paper. In order to reduce the loss of information and improve the practicability of the data, the algorithm combines the local generalization and partial deletion to process the set-valued data. The top-down local generalization is adopted in the processing process, and when the data does not meet the privacy requirement, the method of partial deletion is adopted to achieve the privacy requirement. The downward generalization of the project will reduce the loss of information, but the partial deletion will increase the loss, so the information loss before and after the generalization is to be evaluated at this time. If the information loss of the data after generalization is less, the generalization is adopted, otherwise the generalization is rejected. In the case of anonymous social network data, in order to improve the data utility, the algorithm can protect the integrity of the community structure as much as possible, that is, to preferentially delete the edge between the communities and to preferentially add the edges within the community, and to reduce the impact of the addition and deletion on the community structure. Finally, in order to validate the practicability of the algorithm, this paper evaluates the utility of the set-valued data from the aspects of information loss and the like, and measures the utility of social network data from the similar coefficient of Jardard and the like. The results of the experiment show that the algorithm has good data practicability while protecting the privacy.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP309
【相似文獻】
相關(guān)期刊論文 前10條
1 ;守住你的秘密——隱私保護神[J];計算機與網(wǎng)絡(luò);2002年05期
2 李學(xué)聚;;新時期讀者隱私保護探析[J];科技情報開發(fā)與經(jīng)濟;2006年13期
3 管重;;誰偷窺了你的隱私[J];數(shù)字通信;2007年15期
4 孔為民;;大學(xué)圖書館與隱私保護[J];科技情報開發(fā)與經(jīng)濟;2007年26期
5 尹凱華;熊璋;吳晶;;個性化服務(wù)中隱私保護技術(shù)綜述[J];計算機應(yīng)用研究;2008年07期
6 高楓;張峰;周偉;;網(wǎng)絡(luò)環(huán)境中的隱私保護標準化研究[J];電信科學(xué);2013年04期
7 高密;薛寶賞;;我的電腦信息 隱私保護很強大[J];網(wǎng)友世界;2010年11期
8 ;為自己的電子商務(wù)設(shè)計隱私保護[J];個人電腦;2000年07期
9 ;隱私保護的10個準則[J];個人電腦;2000年07期
10 岑婷婷;韓建民;王基一;李細雨;;隱私保護中K-匿名模型的綜述[J];計算機工程與應(yīng)用;2008年04期
相關(guān)會議論文 前10條
1 鄭思琳;陳紅;葉運莉;;實習(xí)護士病人隱私保護意識和行為調(diào)查分析[A];中華護理學(xué)會第8屆全國造口、傷口、失禁護理學(xué)術(shù)交流會議、全國外科護理學(xué)術(shù)交流會議、全國神經(jīng)內(nèi)、外科護理學(xué)術(shù)交流會議論文匯編[C];2011年
2 孫通源;;基于局部聚類和雜度增益的數(shù)據(jù)信息隱私保護方法探討[A];中國水利學(xué)會2013學(xué)術(shù)年會論文集——S4水利信息化建設(shè)與管理[C];2013年
3 張亞維;朱智武;葉曉俊;;數(shù)據(jù)空間隱私保護平臺的設(shè)計[A];第二十五屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(一)[C];2008年
4 公偉;隗玉凱;王慶升;胡鑫磊;李換雙;;美國隱私保護標準及隱私保護控制思路研究[A];2013年度標準化學(xué)術(shù)研究論文集[C];2013年
5 張鵬;于波;童云海;唐世渭;;基于隨機響應(yīng)的隱私保護關(guān)聯(lián)規(guī)則挖掘[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
6 桂瓊;程小輝;;一種隱私保護的分布式關(guān)聯(lián)規(guī)則挖掘方法[A];2009年全國開放式分布與并行計算機學(xué)術(shù)會議論文集(下冊)[C];2009年
7 俞笛;徐向陽;解慶春;劉寅;;基于保序加密的隱私保護挖掘算法[A];第八屆全國信息隱藏與多媒體安全學(xué)術(shù)大會湖南省計算機學(xué)會第十一屆學(xué)術(shù)年會論文集[C];2009年
8 李貝貝;樂嘉錦;;分布式環(huán)境下的隱私保護關(guān)聯(lián)規(guī)則挖掘[A];第二十二屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2005年
9 徐振龍;郭崇慧;;隱私保護數(shù)據(jù)挖掘研究的簡要綜述[A];第七屆(2012)中國管理學(xué)年會商務(wù)智能分會場論文集(選編)[C];2012年
10 潘曉;郝興;孟小峰;;基于位置服務(wù)中的連續(xù)查詢隱私保護研究[A];第26屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(A輯)[C];2009年
相關(guān)重要報紙文章 前10條
1 記者 李舒瑜;更關(guān)注隱私保護和人格尊重[N];深圳特區(qū)報;2011年
2 荷蘭鹿特丹醫(yī)學(xué)中心博士 吳舟橋;荷蘭人的隱私[N];東方早報;2012年
3 本報記者 周靜;私密社交應(yīng)用風(fēng)潮來襲 聚焦小眾隱私保護是關(guān)鍵[N];通信信息報;2013年
4 獨立分析師 陳志剛;隱私管理應(yīng)歸個人[N];通信產(chǎn)業(yè)報;2013年
5 本報記者 朱寧寧;商業(yè)利益與隱私保護需立法平衡[N];法制日報;2014年
6 袁元;手機隱私保護萌發(fā)商機[N];證券日報;2014年
7 王爾山;跟隱私說再見[N];21世紀經(jīng)濟報道;2008年
8 記者 武曉黎;360安全瀏覽器推“隱私瀏覽”模式[N];中國消費者報;2008年
9 早報記者 是冬冬;“美國隱私保護法律已過時”[N];東方早報;2012年
10 張曉明;隱私的兩難[N];電腦報;2013年
相關(guān)博士學(xué)位論文 前10條
1 孟祥旭;基于位置的移動信息服務(wù)技術(shù)與應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2013年
2 蘭麗輝;基于向量模型的加權(quán)社會網(wǎng)絡(luò)發(fā)布隱私保護方法研究[D];江蘇大學(xué);2015年
3 柯昌博;云服務(wù)組合隱私分析與保護方法研究[D];南京航空航天大學(xué);2014年
4 李敏;基于位置服務(wù)的隱私保護研究[D];電子科技大學(xué);2014年
5 陳東;信息物理融合系統(tǒng)安全與隱私保護關(guān)鍵技術(shù)研究[D];東北大學(xué);2014年
6 張柯麗;信譽系統(tǒng)安全和隱私保護機制的研究[D];北京郵電大學(xué);2015年
7 Kamenyi Domenic Mutiria;[D];電子科技大學(xué);2014年
8 孫崇敬;面向?qū)傩耘c關(guān)系的隱私保護數(shù)據(jù)挖掘理論研究[D];電子科技大學(xué);2014年
9 劉向宇;面向社會網(wǎng)絡(luò)的隱私保護關(guān)鍵技術(shù)研究[D];東北大學(xué);2014年
10 高勝;移動感知計算中位置和軌跡隱私保護研究[D];西安電子科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 鄒朝斌;SNS用戶隱私感知與自我表露行為的關(guān)系研究[D];西南大學(xué);2015年
2 李汶龍;大數(shù)據(jù)時代的隱私保護與被遺忘權(quán)[D];中國政法大學(xué);2015年
3 孫琪;基于位置服務(wù)的連續(xù)查詢隱私保護研究[D];湖南工業(yè)大學(xué);2015年
4 尹惠;無線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合隱私保護技術(shù)研究[D];西南交通大學(xué);2015年
5 王鵬飛;位置服務(wù)中的隱私保護技術(shù)研究[D];南京理工大學(xué);2015年
6 顧鋮;基于關(guān)聯(lián)規(guī)則的隱私保護算法研究[D];南京理工大學(xué);2015年
7 崔堯;基于匿名方案的位置隱私保護技術(shù)研究[D];西安工業(yè)大學(xué);2015年
8 畢開圓;社會網(wǎng)絡(luò)中用戶身份隱私保護模型的研究[D];大連海事大學(xué);2015年
9 黃奚芳;基于差分隱私保護的集值型數(shù)據(jù)發(fā)布技術(shù)研究[D];江西理工大學(xué);2015年
10 高超;具有隱私保護意識的大樣本雙盲隨機對照試驗數(shù)據(jù)管理系統(tǒng)的設(shè)計與實現(xiàn)[D];山東大學(xué);2015年
,本文編號:2460136
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2460136.html