多視圖三維重建中圖像配準和光束法平差過程的并行算法研究
[Abstract]:In recent years, with the development and maturity of computer vision, multi-view 3D reconstruction has been widely used in many fields such as digital city, medical imaging, virtual reality and so on because of its low cost and convenient operation. Image feature extraction, feature matching and beam adjustment are the key steps in multi-view 3D reconstruction, but there are also some problems. First of all, the SIFT algorithm usually used in the feature extraction phase is not suitable for all scenes. Secondly, with the huge advantages of GPU in computing power and memory bandwidth, the multi-view 3D reconstruction algorithm based on GPU has become a hot research topic. However, the migration of feature matching algorithm to GPU platform is less, and because of the different hardware architecture, the reliability of parallel algorithm and the limited display memory greatly restrict the parallel algorithm of beam adjustment. The main contents of this paper are as follows: (1) A parallel image registration algorithm based on Harris-Laplace feature and SIFT description is proposed in this paper. In the feature extraction phase, the improved Harris-Laplace algorithm is used to extract the feature points which are invariant to the brightness, rotation and scale of the image, and then the feature points are described by the SIFT descriptor. In the stage of feature point matching, two-way matching method and polar geometric constraint are used for coarse matching and fine matching of feature points. On the basis of analyzing the parallelism of the algorithm, the CPU_GPU cooperative processing technology is used to divide the tasks reasonably on the CPU and GPU sides, considering the nature of the task and the transmission time. The efficiency of the whole algorithm is improved. (2) LM is often used to linearize the BA problem and PCG algorithm is used to solve the equation. In this paper, we first decompose the PCG algorithm into a simple Yakubi matrix and a vector multiplication problem by taking advantage of the characteristic of the coefficient matrix of the equation without the need of explicit memory method. Then a filtering step is added to the pre-processing process of the BA parallel algorithm, which eliminates the error points caused by the numerical conversion and maximizes the single-precision floating-point operation capability of the GPU with high peak value under the condition of ensuring the accuracy. Finally, on the basis of deeply analyzing the relationship between Yakubi transposable matrix and original matrix, a parallel algorithm of beam adjustment is proposed. The parallel design of the operation involving Yakubi transposable matrix can solve the adjustment problem of beam method without storing Yakubi transposable matrix. From the analysis of the experimental results, this paper proposes a parallel image registration algorithm based on Harris-Laplace feature and SIFT description, which improves the overall efficiency of the algorithm and ensures the accuracy of the algorithm. In this paper, a parallel algorithm for beam adjustment is proposed, which not only achieves better acceleration effect, but also greatly reduces the memory space occupied by the algorithm. With the powerful parallel computing ability of GPU, the real-time performance of multi-view 3D reconstruction is satisfied.
【學位授予單位】:江西理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前10條
1 桂生;劉洪;李飛;;簡化的混合域全波形反演方法及GPU加速[J];石油物探;2017年01期
2 陳潔;高志強;密保秀;陳會;;引入極線約束的SURF特征匹配算法[J];中國圖象圖形學報;2016年08期
3 安婷;賀一民;張志毅;;改進的雙向SIFT特征匹配算法[J];計算機工程與科學;2016年01期
4 姜超;耿則勛;婁博;魏小峰;沈忱;;基于GPU的SIFT特征匹配算法并行處理研究[J];計算機科學;2013年12期
5 劉鑫;許華榮;;基于GPU的特征點提取與匹配算法比較[J];計算機輔助設計與圖形學學報;2013年10期
6 聶俊嵐;陳歡歡;唐勇;張繼凱;;改進的GPU-SIFT特征提取與匹配算法[J];燕山大學學報;2013年02期
7 王蓓蕾;朱志良;孟t-;;基于CUDA加速的SIFT特征提取[J];東北大學學報(自然科學版);2013年02期
8 徐秋輝;佘江峰;宋曉群;肖鵬峰;;利用Harris-Laplace和SIFT描述子進行低空遙感影像匹配[J];武漢大學學報(信息科學版);2012年12期
9 張德好;劉青昆;宮利東;;GPU加速分子動力學模擬中的電荷分布計算[J];計算機應用與軟件;2012年10期
10 肖漢;周清雷;張祖勛;;基于多GPU的Harris角點檢測并行算法[J];武漢大學學報(信息科學版);2012年07期
相關博士學位論文 前6條
1 肖漢;基于CPU+GPU的影像匹配高效能異構并行計算研究[D];武漢大學;2011年
2 田文;多視圖圖像的快速三維場景重建[D];華中科技大學;2010年
3 朱清波;序列圖像三維重建方法研究[D];華中科技大學;2010年
4 徐帆;無組織多視圖圖像的自動化三維場景重建[D];華中科技大學;2007年
5 方磊;基于特征的圖像序列三維場景重建技術研究[D];華中科技大學;2007年
6 陳付幸;基于非定標圖像序列的三維重建關鍵技術研究[D];國防科學技術大學;2005年
相關碩士學位論文 前3條
1 孟云;GPU加速的流體布料碰撞過程仿真[D];杭州電子科技大學;2015年
2 陳鵬;基于GPU的圖像特征提取加速算法[D];復旦大學;2013年
3 陳志雄;基于圖像配準的SIFT算法研究與實現(xiàn)[D];武漢理工大學;2008年
,本文編號:2458898
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2458898.html