基于深度學(xué)習(xí)的表情識(shí)別方法研究
[Abstract]:Facial expression is an indispensable way of human communication. Through the study of facial expression, we can explore the psychological state of human beings, and then fully understand the behavior intention of human beings. Deep learning is a feature learning method. It can solve the problems of speech processing, computer vision, natural language processing and so on by transforming data into higher level and more abstract expression through some simple nonlinear models. In this paper, deep learning is used to solve some problems in expression recognition, and it is verified by experiments. The main contents of this paper are as follows: 1. In this paper, many kinds of deep learning models are studied, which can be divided into deep convolution neural network, depth belief network, depth Boltzmann machine, stacking automatic encoder and recurrent neural network. They have different algorithms and different fields of application. Therefore, choosing the appropriate deep learning model is the key to solve the problem of expression recognition. Through comparison and demonstration, it is found that the special local connection and weight sharing mechanism of deep convolution neural network can solve the problems of large feature dimension and difficult computation in facial expression recognition. Therefore, in this paper, the deep convolution neural network is chosen as the depth learning model of this paper. 2. In order to solve the problem that feature extraction in static expression recognition will lose the original feature information of image, this paper proposes to use depth convolution neural network in depth learning model to realize expression feature extraction. Because the deep convolution neural network avoids the complex pre-processing of the image, it can directly input the original image. It can extract the features through the joint action of convolution and pooling, and it does not need man-made feature extraction, and the network is easy to train. The generalization performance of the fully connected neural network is better than that of the fully connected neural network, so the deep convolution neural network is applied to static expression recognition. In order to solve the problems of poor anti-jamming, slow computing speed and poor real-time performance in dynamic expression recognition, a method of dynamic expression feature extraction based on deep convolution neural network is proposed in this paper. Because the real-time acquired dynamic facial expression sequence from the dynamic expression recognition system is different from the static facial expression recognition, it is necessary for the system to store and recognize the acquired face in real-time. In order to solve this problem, the Haar classifier is used for face detection, and then the deep convolution neural network is introduced to construct the essential features of the image, extract the expression features, and finally use the Softmax classifier to realize the expression classification. 4. In order to improve the nonlinear expression ability of the deep convolution neural network and achieve better expression feature extraction, the network structure is improved and the deep continuous convolution neural network is used to realize the expression recognition. In this paper, the deep convolution neural network is improved, and the idea that the multi-layer small-scale convolution replaces the single-layer large-scale convolution is introduced, that is, the two-layer continuous convolution layer is used to replace the single-layer convolution layer, and the nonlinear expression ability of the network is improved. Then the activation function and parameter optimization method of the network are adjusted to improve the expression feature fitting ability of the network.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張友梅;張偉;;基于數(shù)據(jù)融合的表情識(shí)別[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2016年06期
2 何小飛;鄒崢嶸;陶超;張佳興;;聯(lián)合顯著性和多層卷積神經(jīng)網(wǎng)絡(luò)的高分影像場(chǎng)景分類[J];測(cè)繪學(xué)報(bào);2016年09期
3 楊格蘭;鄧曉軍;劉琮;;基于深度時(shí)空域卷積神經(jīng)網(wǎng)絡(luò)的表情識(shí)別模型[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年07期
4 劉帥師;程曦;郭文燕;陳奇;;深度學(xué)習(xí)方法研究新進(jìn)展[J];智能系統(tǒng)學(xué)報(bào);2016年05期
5 楊雨濃;房鼎益;王洪;;一種基于混合深度置信模型的面部表情識(shí)別方法[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年06期
6 陳耀丹;王連明;;基于卷積神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別方法[J];東北師大學(xué)報(bào)(自然科學(xué)版);2016年02期
7 孫曉;潘汀;任福繼;;基于ROI-KNN卷積神經(jīng)網(wǎng)絡(luò)的面部表情識(shí)別[J];自動(dòng)化學(xué)報(bào);2016年06期
8 王偉凝;王勵(lì);趙明權(quán);蔡成加;師婷婷;徐向民;;基于并行深度卷積神經(jīng)網(wǎng)絡(luò)的圖像美感分類[J];自動(dòng)化學(xué)報(bào);2016年06期
9 馬曉;張番棟;封舉富;;基于深度學(xué)習(xí)特征的稀疏表示的人臉識(shí)別方法[J];智能系統(tǒng)學(xué)報(bào);2016年03期
10 牛連強(qiáng);陳向震;張勝男;王琪輝;;深度連續(xù)卷積神經(jīng)網(wǎng)絡(luò)模型構(gòu)建與性能分析[J];沈陽工業(yè)大學(xué)學(xué)報(bào);2016年06期
相關(guān)博士學(xué)位論文 前1條
1 萬川;基于動(dòng)態(tài)序列圖像的人臉表情識(shí)別系統(tǒng)理論與方法研究[D];吉林大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 產(chǎn)文濤;基于卷積神經(jīng)網(wǎng)絡(luò)的人臉表情和性別識(shí)別[D];安徽大學(xué);2016年
2 劉曠;基于卷積網(wǎng)絡(luò)集成的面部表情識(shí)別方法[D];浙江大學(xué);2016年
3 陳向震;基于深度學(xué)習(xí)的人臉表情識(shí)別算法研究[D];沈陽工業(yè)大學(xué);2016年
4 曹寧;基于靜態(tài)圖像的人臉表情識(shí)別算法研究[D];西安科技大學(xué);2015年
5 池燕玲;基于深度學(xué)習(xí)的人臉識(shí)別方法的研究[D];福建師范大學(xué);2015年
6 施徐敢;基于深度學(xué)習(xí)的人臉表情識(shí)別[D];浙江理工大學(xué);2015年
7 汪濟(jì)民;基于卷積神經(jīng)網(wǎng)絡(luò)的人臉檢測(cè)和性別識(shí)別研究[D];南京理工大學(xué);2015年
8 葉浪;基于卷積神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別研究[D];東南大學(xué);2015年
9 高旭;基于動(dòng)態(tài)序列圖像的人臉表情特征提取與識(shí)別[D];吉林大學(xué);2014年
10 劉銀華;LBP和深度信念網(wǎng)絡(luò)在非限制條件下人臉識(shí)別研究[D];五邑大學(xué);2014年
,本文編號(hào):2438608
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2438608.html