立體匹配技術(shù)在波浪攝影測量中的應用研究
[Abstract]:In this paper, the feature extraction and feature matching of stereo matching in binocular vision are studied in order to increase the number of matching pairs of feature points and reduce the mismatch rate in the background of binocular photowave measurement. The improved stereo matching algorithm is applied to wave height measurement of flume. Firstly, the classical feature extraction algorithms Moravec,Harris and SIFT, are introduced, and the simulation experiments and wave image feature extraction are carried out. The experimental results show that the Harris corner distribution can better reflect the wave structure. The stability of SIFT feature extraction is the best when the wave image changes. Then, the pyramid matching and SIFT matching are introduced, and the simulation experiments and the wave image feature matching are carried out respectively. The experiment shows that the mismatch rate is not high, but the number of matching pairs is small. Then, an improved stereo matching algorithm is proposed to solve the problem that the SIFT algorithm has fewer matching pairs and less mismatch when processing wave images. In the feature extraction part, the Harris sub-pixel corner is used to replace the DoG extremum, and the Harris corner response threshold is changed to change the number of feature points. The Harris sub-pixel corner is obtained by approximating the corner response value by quadratic polynomial. In the part of feature matching, bidirectional matching strategy is used to eliminate mismatch pairs, and polar line constraints are used to determine candidate matching sets in bidirectional matching strategies. The experimental results show that compared with the traditional SIFT algorithm, the improved algorithm not only has a lower mismatch rate, but also has a significant increase in the number of matching pairs. Finally, in order to verify the applicability of the improved stereo matching algorithm in wave images, the improved algorithm is used to deal with the wave images collected from indoor experiments and circular flume experiments. The matching results are used to reconstruct the wave images and contour images. The experimental results show that the waveforms of the three-dimensional images are the same as those of the actual waves, and the errors between the measured values and the actual values of the two groups of wave heights in the flume experiment are about 2.67% and 4.84%, respectively.
【學位授予單位】:哈爾濱工程大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:U661.7;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 李治江;馮謹強;曹文冬;曹麗琴;楊萍;;基于邊緣特征和可信度的立體匹配算法[J];包裝工程;2014年23期
2 崔浩;王中秋;劉慧;許巖;;基于輪廓線提取技術(shù)的波峰坐標采集算法研究[J];山東科學;2014年02期
3 孫雪琪;董明利;王君;孫鵬;;雙目動態(tài)視覺測量的匹配[J];北京信息科技大學學報(自然科學版);2013年02期
4 曾巒;顧大龍;;一種基于扇形區(qū)域分割的SIFT特征描述符[J];自動化學報;2012年09期
5 張寧;常雷;徐熙平;;基于機器視覺的三維重建技術(shù)研究[J];激光與光電子學進展;2012年05期
6 紀華;吳元昊;孫宏海;王延杰;;結(jié)合全局信息的SIFT特征匹配算法[J];光學精密工程;2009年02期
7 喬警衛(wèi);胡少興;;三維重建中特征點提取與匹配算法研究[J];系統(tǒng)仿真學報;2008年S1期
8 左其華;;現(xiàn)場波浪觀測技術(shù)發(fā)展和應用[J];海洋工程;2008年02期
9 劉立;彭復員;趙坤;萬亞平;;采用簡化SIFT算法實現(xiàn)快速圖像匹配[J];紅外與激光工程;2008年01期
10 孫鶴泉;邱大洪;沈永明;王永學;;基于光學折射的波面形態(tài)測量[J];哈爾濱工業(yè)大學學報;2006年04期
相關(guān)博士學位論文 前2條
1 蔡宇;三維人臉檢測與識別技術(shù)研究[D];吉林大學;2013年
2 姜文正;數(shù)字立體攝影波浪測量技術(shù)[D];中國科學院研究生院(海洋研究所);2012年
相關(guān)碩士學位論文 前7條
1 許雯;立體視覺中局部立體匹配算法研究[D];西安電子科技大學;2014年
2 周芳;雙目視覺中立體匹配算法的研究與實現(xiàn)[D];大連理工大學;2013年
3 郭金芝;基于SIFT算法的車牌識別系統(tǒng)研究[D];西安電子科技大學;2012年
4 喻恒;黃河模型河勢寬度與表面流速圖像測量方法的研究與應用[D];河南大學;2011年
5 王靜;基于SIFT和角點檢測的自動圖像配準方法研究[D];華中科技大學;2010年
6 劉盛夏;基于相位信息的立體圖像匹配研究[D];上海交通大學;2010年
7 王惠玲;波浪的光學測量法研究[D];大連理工大學;2005年
,本文編號:2429797
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2429797.html