天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

機(jī)制砂粒徑粒形檢測系統(tǒng)開發(fā)及實(shí)驗(yàn)研究

發(fā)布時間:2019-02-24 17:29
【摘要】:瀝青混合料是目前世界上用量最大的道路建設(shè)材料,從體積構(gòu)成看,瀝青混合料中細(xì)集料占總體積的40%~50%。巨大的市場需求使國內(nèi)天然砂資源逐年減少,機(jī)制砂替代天然砂是必然趨勢。但是我國機(jī)制砂粒徑、粒形質(zhì)量參差不齊,機(jī)制砂形態(tài)質(zhì)量檢測是保證混合料質(zhì)量的關(guān)鍵。傳統(tǒng)振動篩分法只能實(shí)現(xiàn)機(jī)制砂粒徑級配檢測,圖像法能同時實(shí)現(xiàn)粒徑和粒形檢測。本文針對粒徑為0.6~4.75 mm的機(jī)制砂進(jìn)行檢測算法研究及開發(fā)相應(yīng)的檢測系統(tǒng)。設(shè)計機(jī)制砂振動分散系統(tǒng),采用CCD相機(jī)實(shí)現(xiàn)對下落砂粒進(jìn)行圖像采集,為了減小機(jī)制砂表面顏色對檢測結(jié)果的影響,設(shè)計了無影背光光源系統(tǒng),研制了機(jī)制砂粒徑、粒形檢測硬件系統(tǒng)。采用高斯濾波對灰度化后的圖像進(jìn)行去噪;采用最大類間方差法對濾波后的圖像進(jìn)行分割得到二值圖;利用顆粒幾何特征判別圖像邊界處不完整顆粒,并進(jìn)行去除;利用Hu矩特征識別并消除相鄰圖片中被重復(fù)拍攝的顆粒;通過求取顆粒凸包和凹點(diǎn)檢測,分離了粘連的顆粒。提出了一種新的圖像標(biāo)定方法;赩isual Studio C++、Open CV庫和Qt開發(fā)了機(jī)制砂粒徑粒形檢測軟件系統(tǒng)。對0.6~4.75 mm粒徑范圍的機(jī)制砂單級料、級配料分別進(jìn)行了粒徑、粒形檢測的重復(fù)性試驗(yàn)、與新帕泰克QICPIC動態(tài)顆粒圖像分析儀的精度對比試驗(yàn)。實(shí)驗(yàn)結(jié)果表明,對單級料和級配料的粒徑檢測最大重復(fù)性誤差為3.46%和0.51%,粒形檢測最大重復(fù)性誤差為2.97%和0.85%,顆粒形狀越趨于球形,重復(fù)性越好。與新帕泰克的粒徑結(jié)果對比,單級料與級配料兩儀器的最大偏差為7.19%和6.02%,粒形結(jié)果最大偏差為3.08%和2.42%。針對圖像法和振動篩分法機(jī)制砂粒徑檢測的差異性,提出了一種粒徑修正方法,修正后粒徑檢測精度能滿足工程實(shí)際測量需求。以國標(biāo)《公路工程集料試驗(yàn)規(guī)程》(JTG E42-2005)中測量細(xì)集料粒形棱角性的流動時間法為對比,對不同粒形表征參數(shù)和流動時間進(jìn)行了相關(guān)性研究,得到等效橢圓長短軸比為最優(yōu)粒形表征參數(shù)。所開發(fā)的檢測系統(tǒng)能滿足機(jī)制砂粒徑、粒形實(shí)驗(yàn)室檢測需求,能有效監(jiān)測機(jī)制砂質(zhì)量。
[Abstract]:Asphalt mixture is the most used road construction material in the world at present. In terms of volume composition, fine aggregate in asphalt mixture accounts for 40% of the total volume. The huge market demand makes the natural sand resource decrease year by year. It is inevitable to replace the natural sand with machine-made sand. However, the particle size and grain shape of machine-made sand are not uniform in China, and the quality detection of machine-made sand is the key to ensure the quality of mixture. The traditional vibrating sieve method can only detect the particle size gradation of machine-made sand, and the image method can detect the particle size and shape at the same time. In this paper, the detection algorithm of machine-made sand with a particle size of 0.6 ~ 4.75 mm is studied and the corresponding detection system is developed. The mechanism sand vibration dispersion system is designed, and the falling sand image is collected by CCD camera. In order to reduce the influence of the surface color of the machined sand on the detection result, a non-shadow backlight light source system is designed, and the particle size of the machined sand is developed. Grain shape detection hardware system. Gao Si filter is used to denoise the grayscale image; the maximum inter-class variance method is used to segment the filtered image to obtain the binary image; the incomplete particles at the edge of the image are identified by the geometric characteristics of the particles and removed. The Hu moment feature is used to identify and eliminate the repeated shot particles in the adjacent images, and the conglutinated particles are separated by detecting the convex hull and the concave point of the particles. A new image calibration method is proposed. Based on Visual Studio C, Open CV library and Qt, a software system for particle shape detection of machine-made sand is developed. The reproducibility tests of particle size and particle shape were carried out for the single grade compound of machine-made sand with the particle size range of 0.6 ~ 4.75 mm, and the precision comparison test of the new QICPIC dynamic particle image analyzer was carried out. The experimental results show that the maximum repeatability error of particle size detection is 3.46% and 0.51% for single stage and grade proportioning, and 2.97% and 0.85% for particle shape detection. The more spherical the particle shape, the better the repeatability. Compared with the results of the particle size of neopateck, the maximum deviation of the single stage material and the grade batching is 7.19% and 6.02%, and the maximum deviation of the particle shape is 3.08% and 2.42% respectively. In view of the difference between the image method and the vibrating screen method, a particle size correction method is proposed. The precision of the modified particle size measurement can meet the needs of practical engineering measurement. Based on the flow time method for measuring fine aggregate shape and angularity in JTG E42-2005, the correlation between different particle shape characterization parameters and flow time was studied, by comparing with the flow time method in the National Standard "Highway Engineering aggregate Test Code" (JTG E42-2005). The equivalent ellipse long and short axis ratio is obtained as the optimal particle shape characterization parameter. The developed testing system can meet the requirements of particle size and particle shape laboratory testing, and can effectively monitor the quality of machined sand.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U414;TP391.41

【相似文獻(xiàn)】

相關(guān)期刊論文 前2條

1 邵士勇;黃印博;姚永幫;饒瑞中;;氣溶膠粒形光學(xué)測量技術(shù)的研究進(jìn)展[J];大氣與環(huán)境光學(xué)學(xué)報;2008年01期

2 權(quán)龍哲;祝榮欣;馬小愚;;基于傅里葉描述的小麥籽粒三維粒形研究[J];東北農(nóng)業(yè)大學(xué)學(xué)報;2008年06期

相關(guān)會議論文 前2條

1 張亞東;張穎慧;董少玲;陳濤;趙慶勇;朱鎮(zhèn);周麗慧;姚姝;趙春芳;于新駱;名瑞;王才林;;利用大粒材料定位水稻粒形性狀數(shù)量基因位點(diǎn)[A];現(xiàn)代分子植物育種與糧食安全研討會論文集[C];2011年

2 鄧華鳳;孫平勇;何強(qiáng);張武漢;舒服;;水稻粒形遺傳及其QTL定位與克隆研究進(jìn)展[A];中國作物學(xué)會50周年慶祝會暨2011年學(xué)術(shù)年會論文集[C];2011年

相關(guān)重要報紙文章 前1條

1 本報特約記者 省種子管理站 向子鈞 伍同寸 吳和明 等;怎樣用肉眼觀察種子的真?zhèn)?[N];湖北科技報;2006年

相關(guān)博士學(xué)位論文 前6條

1 孫亮;水稻粒形主效QTL對粒重形成的遺傳貢獻(xiàn)和粒長基因GS3.2的圖位克隆[D];華中農(nóng)業(yè)大學(xué);2013年

2 王躍星;水稻粒形基因GL7的克隆、功能研究及育種利用[D];中國農(nóng)業(yè)科學(xué)院;2015年

3 茆海亮;水稻粒形基因GS3的功能研究[D];華中農(nóng)業(yè)大學(xué);2010年

4 魯麗;水稻多效性基因Ghd7、粒形基因GW2、GS5、qSW5的進(jìn)化及與性狀的關(guān)聯(lián)分析[D];華中農(nóng)業(yè)大學(xué);2013年

5 樓玨;稻米品質(zhì)的分子遺傳剖析及輻射誘變?nèi)后w中水稻粒形突變體的鑒定[D];華中農(nóng)業(yè)大學(xué);2009年

6 張曉軍;水稻粒長基因qGL3的定位克隆、功能分析及育種利用研究[D];南京農(nóng)業(yè)大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 林澤鋒;水稻地方品種螃蟹谷的粒形遺傳分析與定位[D];南京農(nóng)業(yè)大學(xué);2014年

2 徐禮東;利用秈粳染色體片段置換系研究水稻粒形相關(guān)性狀的遺傳基礎(chǔ)[D];南京農(nóng)業(yè)大學(xué);2014年

3 葉乃忠;水稻粒形基因GS2.2的精細(xì)定位[D];湖南農(nóng)業(yè)大學(xué);2016年

4 高志強(qiáng);水稻遺傳圖譜構(gòu)建及粒形和粒重QTL定位[D];中國農(nóng)業(yè)科學(xué)院;2011年

5 文覓;水稻粒形QTL的定位及休眠候選基因的鑒定[D];華中農(nóng)業(yè)大學(xué);2013年

6 王松鳳;水稻粒形相關(guān)性狀及千粒重QTL表達(dá)穩(wěn)定性分析[D];南京農(nóng)業(yè)大學(xué);2007年

7 李龍;水稻籽粒腹切的QTL分析和一個粒形基因的精細(xì)定位[D];中國農(nóng)業(yè)科學(xué)院;2012年

8 陸燕;小麥粒形突變體基因的遺傳分析及作圖[D];中國農(nóng)業(yè)科學(xué)院;2013年

9 周海慶;水稻粒形及千粒重的遺傳研究[D];延邊大學(xué);2014年

10 劉曉芬;大豆栽培品種群體粒形性狀及百粒重的關(guān)聯(lián)分析[D];南京農(nóng)業(yè)大學(xué);2010年

,

本文編號:2429769

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2429769.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶612f4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com