基于聚類的加權(quán)Slope One推薦技術(shù)研究
[Abstract]:The explosive growth of the scale of information in the Internet meets the needs of users for information. However, the huge amount of information makes it difficult for users to locate useful information quickly, reduce the utilization rate of information, and lead to the problem of information overload. Personalized recommendation technology is an effective way for users to make personalized recommendation. Its core is that the recommendation algorithm. Slope One algorithm is a simple and efficient collaborative filtering algorithm based on project. It has been widely used to achieve good recommendation effect in a small amount of data. However, the existing Slope One algorithm can not make accurate recommendation in the case of sparse data. In the process of evaluation, independent items are used to predict the score and the changes of user interest can not be quickly perceived. In order to solve the above problems, this paper improves the method of weight calculation, proposes an improved weighted Slope One algorithm, introduces the related technology of data mining, classifies and preprocesses the data, and proposes a weighted Slope One algorithm based on clustering. The main works are as follows: first, based on the traditional K-Means algorithm, a K-Means algorithm based on minimum spanning tree is proposed to generate K clustering centers automatically. In order to improve the clustering effect, the traditional K-Means algorithm can solve the local optimal problem caused by the randomness of the initial clustering center selection. Secondly, the original item scoring matrix is predicted and filled with the clustering results to solve the sparse problem of the algorithm. According to the clustering results, the size of the recommended candidate set is reduced, and the calculation amount of the recommendation algorithm is reduced. Thirdly, considering the difference between item attribute and item score on project similarity, we introduce the method of project attribute and item score to calculate the project similarity, and improve the accuracy of project similarity. Fourth, in order to better reflect the change of user interest in the algorithm, highlight the role of new data weakening the old data. The time weight is added to the recommendation algorithm, and the time weight function of the access frequency is put forward considering the factors that affect the time weight. Fifthly, according to the improved algorithm proposed in this paper, we design the recommendation system, introduce the module composition, the call relationship between modules and the algorithm flow inside the module, and use the MovieLens data set to verify the system. The experiments show that compared with the traditional recommendation algorithm, the weighted Slope One algorithm based on clustering can effectively solve the sparse problem and reduce the computational complexity. The addition of item similarity and time weight improves the accuracy and time sensitivity of the algorithm. The overall algorithm can significantly reduce the average absolute error and can effectively improve the overall performance of the recommendation system.
【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁(yè)面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):2424350
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2424350.html