基于毛孔尺度特征分析的帶皮豬肉追溯研究
[Abstract]:Pork is the main meat food in our country. Although the government has paid a lot of manpower and material resources to supervise the pork production, there have been a series of serious pork food safety accidents in recent years. At present, the traceability of pork in our country mainly depends on the qualified seal on the skin of the pig and the information recorded by the personnel in every link, and it does not depend on the characteristics of the pork itself to realize the tracing of the pork. Pores, as the characteristics of skinned pork, are common in pig skin, and can basically maintain the same characters in the circulation process. The purpose of this study is to explore and extract the unique feature information carried by pores in porcine skin images and to match the local porcine skin images with the overall pig skin images so as to achieve the traceability of skinned pork. The main contents and conclusions of this paper are as follows: (1) the study of pore feature extraction from high-definition porcine skin image. According to the target of this study, the pig skin samples were purchased from the market, and the high-definition pig skin images were collected. The porcine pores in the high-definition pig skin images were modeled. Based on the pore characteristics of porcine skin image and the target application scene, a multi-directional pore feature extraction algorithm, MPSIFT (Multi-orientation Pore Scale Invariant Feature Transform), is proposed based on the pore feature extraction algorithm (PSIFT (Pore Scale Invariant Feature Transform). The resulting pore features have a certain rotation invariance. MPSIFT algorithm is used to detect and extract pores of porcine skin image, and at least one feature point description vector is generated for each pore feature point. (2) matching between local pig skin image and total pig skin image. Based on the pore size feature of high-definition pig skin image extracted by MPSIFT algorithm, the matching between local pig skin image and total pig skin image is studied in this paper. In this study, the angle of feature point description vector is used as the similarity measure of porcine skin image pore feature point, and the ratio of different feature point description vector and matching feature point description vector angle is used to measure the matching degree between feature points. After the pore feature matching of two porcine skin images is completed, the outlier detection method is used to screen the matching feature pairs, and the false matching feature pairs are eliminated. So as to ensure the quality of the matching pore feature points. (3) based on the matching between local porcine skin image and total porcine skin image, a new technique of pork traceability based on pore size feature analysis is proposed in this paper. The traceability principle of skinned pork and the application scene of this technique are also given. (4) the experiment and analysis of porcine skin image pore feature extraction and matching. In this study, the effects of different data characteristics on the matching effect between local pig skin image and total pig skin image were investigated. Finally, 94.14% of the local pig skin image and the total pig skin image are matched correctly in all the pig skin images collected. The success rate of local pig skin image was 86.73%.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TS251.51;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 丁同;王仲根;汪強(qiáng);唐曉菀;;基于物聯(lián)網(wǎng)及DNA識別技術(shù)的牛肉溯源系統(tǒng)的研究[J];物聯(lián)網(wǎng)技術(shù);2017年01期
2 周琳琳;何中市;;基于Fisherface和SIFT特征集成的人臉識別[J];現(xiàn)代計算機(jī)(專業(yè)版);2017年02期
3 馮震;付敬奇;熊南;;一種快速的離群點檢測方法[J];電子測量與儀器學(xué)報;2016年11期
4 楊奉陽;秦興;陳浩;鄭騰飛;;基于云平臺和體溫標(biāo)簽的豬肉質(zhì)量安全追溯系統(tǒng)[J];江蘇農(nóng)業(yè)科學(xué);2016年10期
5 李煬;翟社平;;改進(jìn)的SIFT圖像匹配算法[J];計算機(jī)技術(shù)與發(fā)展;2016年11期
6 楊敏;賴惠成;董九玲;班俊碩;林憲峰;;改進(jìn)SIFT融合五官特征的旋轉(zhuǎn)人臉檢測算法[J];計算機(jī)測量與控制;2016年04期
7 周穎;;基于SIFT算法的圖像特征匹配[J];現(xiàn)代計算機(jī)(專業(yè)版);2015年05期
8 吳瀟;張小波;朱連龍;談永松;唐雪明;;肉產(chǎn)品分子溯源標(biāo)記的研究進(jìn)展[J];食品科學(xué);2010年07期
9 楊明;吳曉萍;洪鵬志;解萬翠;蔣志紅;鄧銳;彭銀橋;;可追溯體系在食品供應(yīng)鏈中的建立[J];食品與機(jī)械;2009年01期
相關(guān)博士學(xué)位論文 前1條
1 謝菊芳;豬肉安全生產(chǎn)全程可追溯系統(tǒng)的研究[D];中國農(nóng)業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前9條
1 羅亮;基于SIFT算法的圖像匹配技術(shù)的研究[D];東華理工大學(xué);2016年
2 呂智慧;一種基于改進(jìn)的SIFT算法的圖像配準(zhǔn)方法[D];哈爾濱理工大學(xué);2016年
3 馬媛;豬肉產(chǎn)品安全追溯系統(tǒng)的設(shè)計與實現(xiàn)[D];西北農(nóng)林科技大學(xué);2015年
4 王凱強(qiáng);基于脂肪酸及~1H-NMR特征標(biāo)志物的有機(jī)豬肉溯源技術(shù)研究[D];中國農(nóng)業(yè)科學(xué)院;2015年
5 孔大維;基于供應(yīng)鏈管理的食品可追溯系統(tǒng)的構(gòu)建研究[D];成都理工大學(xué);2013年
6 鮑曉成;基于物聯(lián)網(wǎng)的豬肉食品供應(yīng)鏈可追溯體系研究[D];長沙理工大學(xué);2013年
7 王培強(qiáng);基于RFID與條碼技術(shù)的豬肉追溯管理信息系統(tǒng)分析與設(shè)計[D];北京工業(yè)大學(xué);2012年
8 楊欣;豬肉供應(yīng)鏈安全跟蹤追溯系統(tǒng)分析與設(shè)計[D];吉林大學(xué);2009年
9 韓紅霞;基于距離離群點的分析與研究[D];江蘇大學(xué);2007年
,本文編號:2424320
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2424320.html