基于機(jī)器視覺的寄生蟲卵顯微圖像自動(dòng)識(shí)別研究
[Abstract]:With the development of computer technology and the wide application of interdiscipline in various fields, the automatic recognition technology of microscopic image based on machine vision has been developed rapidly in the field of medicine, which not only provides a reliable and efficient tool for clinical diagnosis. At the same time, it also brings convenience to medical research and teaching. The detection of parasite eggs is one of the most important items in medicine. The traditional examination of parasite eggs is mostly by artificial microscope, which is not only low efficiency and high working intensity, but also can not preserve the complete case data due to the subjective influence of the operators. It is unfavorable to clinical dynamic observation. The automatic detection based on machine vision is not only efficient and pollution-free, but also adapt to the needs of modern medical information development. Therefore, this paper is based on the research of microscopic image recognition of parasite eggs and cells. The process of parasite egg microscopic image acquisition and recognition based on machine vision is studied. The specific research contents are as follows: 1. This paper mainly introduces the hardware structure design of the parasite egg microscopic image recognition system based on machine vision, including the automatic collection device of egg specimen, the automatic shooting device of microscope, the illumination system, the CCD camera, the image acquisition card and so on. In view of the high noise characteristics of parasite egg microscopic image, the image preprocessing and segmentation methods are studied, and an improved two-dimensional maximum entropy threshold genetic algorithm combined with morphological image segmentation optimization algorithm is proposed. Can accurately and quickly realize the parasite egg microscopic image denoising segmentation. 3. In this paper, several common characteristic types of parasite egg microscopic image are introduced in detail, and the methods of extracting all kinds of characteristics are studied. To find out a group of best feature combinations as the input amount of parasite egg microscopic image to characterize the characteristics of various typical parasite egg microscopic images. 4. This paper studies several intelligent recognition algorithms, such as BP (Back Propagation) neural network, SVM (Support Vector Machine), which designs classifiers based on BP neural network and SVM classifier, respectively, according to the features of extracted parasite egg microscopic images. The recognition accuracy of the two classifiers is analyzed, and the recognition rates of the two classifiers are compared to select the high precision and high efficiency classifiers. Through the research and experiment in this paper, it is proved that the automatic recognition technology of parasite egg microscopic image based on machine vision is feasible and effective, and has certain practical value in medicine.
【學(xué)位授予單位】:河南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蘇靜;楊武俊;;基于BP神經(jīng)網(wǎng)絡(luò)圖像分割算法研究[J];工業(yè)控制計(jì)算機(jī);2015年12期
2 史文中;趙元凌;王群明;;多偏移遙感圖像的BP神經(jīng)網(wǎng)絡(luò)亞像元定位[J];紅外與毫米波學(xué)報(bào);2014年05期
3 王迪;;基于線性判別分析的寄生蟲卵識(shí)別[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2014年13期
4 李林偉;王紅旗;姜磊;;基于支持向量機(jī)的表面肌電信號(hào)動(dòng)作模式識(shí)別[J];科學(xué)技術(shù)與工程;2014年07期
5 劉娜;姜燕;;智能優(yōu)化算法在圖像分割中的性能分析[J];計(jì)算機(jī)與數(shù)字工程;2013年05期
6 胡曉泊;張鵬;安稷;張丹丹;于君君;林杰;;基于計(jì)算機(jī)視覺的醫(yī)學(xué)圖像自動(dòng)識(shí)別技術(shù)研究[J];微計(jì)算機(jī)信息;2012年10期
7 李峰;孫啟艷;;基于圖像邊界特征的人體寄生蟲蟲卵形狀分類算法研究[J];計(jì)算機(jī)科學(xué);2012年05期
8 周長英;;基于改進(jìn)的模糊BP神經(jīng)網(wǎng)絡(luò)圖像分割算法[J];計(jì)算機(jī)仿真;2011年04期
9 郭凱;;遺傳算法的3種改進(jìn)方法和分析[J];電子測試;2011年03期
10 許宗敬;胡平;;顯微圖像紋理特征提取方法綜述[J];微計(jì)算機(jī)應(yīng)用;2009年06期
相關(guān)博士學(xué)位論文 前1條
1 梁光明;體液細(xì)胞圖像有形成分智能識(shí)別關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 漆鵬杰;基于機(jī)器視覺的顯微細(xì)胞圖像有形成分自動(dòng)識(shí)別研究[D];蘇州大學(xué);2015年
2 陳琴;基于機(jī)器視覺的糞便白細(xì)胞自動(dòng)檢測動(dòng)態(tài)庫設(shè)計(jì)與實(shí)現(xiàn)[D];山東大學(xué);2015年
3 劉國陽;基于機(jī)器視覺的微小零件尺寸測量技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
4 高源;血吸蟲卵圖像識(shí)別算法設(shè)計(jì)與實(shí)現(xiàn)[D];南京航空航天大學(xué);2014年
5 彭馳;基于BP神經(jīng)網(wǎng)絡(luò)的南方紅土物源識(shí)別研究[D];浙江師范大學(xué);2013年
6 李寧;基于流統(tǒng)計(jì)特性的應(yīng)用協(xié)議識(shí)別技術(shù)研究[D];南京郵電大學(xué);2013年
7 宋陽;全自動(dòng)點(diǎn)膠機(jī)控制器上位機(jī)控制系統(tǒng)研制與設(shè)計(jì)[D];合肥工業(yè)大學(xué);2013年
8 張聰;醫(yī)學(xué)生物細(xì)胞分割與提取的研究與實(shí)現(xiàn)[D];長春理工大學(xué);2013年
9 胡文靜;基于機(jī)器視覺的人眼生物信息獲取技術(shù)的研發(fā)與仿真[D];哈爾濱理工大學(xué);2010年
10 馮進(jìn)功;基于數(shù)學(xué)形態(tài)學(xué)的醫(yī)學(xué)圖像處理研究[D];黑龍江大學(xué);2009年
,本文編號(hào):2423678
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2423678.html