基于機(jī)器視覺的航空電連接器插針檢測(cè)技術(shù)研究
[Abstract]:Avionics connectors are widely used in all kinds of instruments and spaceflight system engineering. They play the role of signal transmission and electric energy transmission in the system. Therefore, the reliability and safety of avionics connectors are very important to the whole system engineering. At present, the detection of pin contacts mainly depends on manual visual detection. This method has low precision, low efficiency and no repeatability and traceability. Therefore, this paper proposes a method of pin detection based on machine vision. Carry on the system design, realize the fast high precision inspection of the pin. According to the requirements and technical specifications of the measurement, the paper studies the detection technology of the aviation electrical connector pin, determines the measurement scheme, and designs and selects the functional modules of the system based on the testing method of machine vision. The computer software is written. The algorithm of pin recognition in image is studied. Firstly, the image background is segmented with the measured electrical connector size feature to preserve the effective information area in the image, and then the image denoising algorithm is studied and selected in combination with the image quality. Finally, the algorithm of pin recognition is studied, and the scheme of pin recognition using template matching algorithm based on gray level feature is determined. The correlation coefficient matching method is used to measure the similarity between the pin template image and the image to be searched. Finally, the coarse positioning of the pin pixel coordinates is carried out. The algorithm of pin location in image is studied. Firstly, the pixel equivalent calibration of the system is carried out, and the calibration method based on the least square method is determined, and the system calibration experiment is carried out. Secondly, the extraction method of pixel coordinates is studied, and the gray centroid localization method and weighted gray centroid positioning method are experimented respectively. Finally, the coordinate transformation algorithm of the pin is discussed, and related experiments are carried out. The standard uncertainty synthesis of the system is discussed. The error source of the system is analyzed. The uncertainty components of the system are calculated by statistical method and non-statistical method, and the overall standard uncertainty of the system is synthesized, and the measuring accuracy of the system is detected by measuring the pin of known distance. The test system designed in this paper can meet the inspection requirement of circular connector pin, and the detection precision of the system is better than 0.06mm, which can meet the requirement of industrial field measurement.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:V242;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝俊;吳滎滎;朱廣韜;王路路;;基于機(jī)器視覺的二維尺寸檢測(cè)[J];工具技術(shù);2017年01期
2 杜永英;孫志禮;呂春梅;;JF系列某型電連接器組件端子可靠性研究[J];機(jī)械與電子;2015年09期
3 馮新星;張麗艷;葉南;楊博文;;二維高斯分布光斑中心快速提取算法研究[J];光學(xué)學(xué)報(bào);2012年05期
4 胡靜波;;改進(jìn)的中值濾波去噪算法分析[J];信息技術(shù);2011年08期
5 陳運(yùn)錦;馮瑩;魏立安;趙輝;朱志武;;光斑質(zhì)心亞像素定位誤差的實(shí)驗(yàn)研究[J];光電工程;2010年02期
6 宋仁庭;楊衛(wèi)平;楊明月;;模板匹配算法對(duì)運(yùn)動(dòng)目標(biāo)自動(dòng)鎖定跟蹤的研究[J];紅外與激光工程;2007年S2期
7 楊?yuàn)^為;;軍用電連接器的應(yīng)用及發(fā)展[J];機(jī)電元件;2007年03期
8 鄭國威;高滿屯;董巧英;;基于平面鏡的攝像機(jī)內(nèi)參數(shù)線性標(biāo)定方法[J];計(jì)算機(jī)工程與應(yīng)用;2006年28期
9 萬洪林;彭玉華;郭銳;;基于方向的自適應(yīng)多級(jí)中值濾波[J];通信學(xué)報(bào);2006年04期
10 楊?yuàn)^為;航天電連接器組件的常見故障檢驗(yàn)[J];機(jī)電元件;2005年03期
相關(guān)碩士學(xué)位論文 前10條
1 黃震;基于機(jī)器視覺的接插件檢測(cè)與定位技術(shù)研究[D];中國礦業(yè)大學(xué);2015年
2 邱志祺;基于中值濾波與小波變換的圖像去噪研究[D];華北理工大學(xué);2015年
3 劉國陽;基于機(jī)器視覺的微小零件尺寸測(cè)量技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
4 王阿力;基于數(shù)字圖像處理的表面缺損檢測(cè)研究[D];哈爾濱工業(yè)大學(xué);2014年
5 翁璇;大視場(chǎng)內(nèi)多靶板位姿單目視覺跟蹤測(cè)量系統(tǒng)的仿真研究[D];南京航空航天大學(xué);2014年
6 張建華;基于灰度的模板匹配算法研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2013年
7 張會(huì)利;基于圖像處理技術(shù)的航天工業(yè)零件參數(shù)測(cè)量研究[D];哈爾濱工業(yè)大學(xué);2013年
8 劉金保;形狀匹配算法研究及應(yīng)用[D];廣東工業(yè)大學(xué);2011年
9 朱萃;基于機(jī)器視覺的微小型組件精密測(cè)量與裝配[D];大連理工大學(xué);2010年
10 陳初俠;圖像濾波及邊緣檢測(cè)與增強(qiáng)技術(shù)研究[D];合肥工業(yè)大學(xué);2009年
,本文編號(hào):2407210
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2407210.html