天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

個(gè)性化旅游景點(diǎn)推薦研究

發(fā)布時(shí)間:2019-01-10 11:33
【摘要】:隨著移動(dòng)互聯(lián)網(wǎng)的廣泛普及和旅游者對(duì)旅游服務(wù)品質(zhì)的要求不斷加深,在線旅游、移動(dòng)旅游等服務(wù)也逐漸興起,在線旅游景點(diǎn)的個(gè)性化推薦逐漸成為個(gè)性化推薦技術(shù)領(lǐng)域的一個(gè)應(yīng)用和研究熱點(diǎn)。面對(duì)龐大、復(fù)雜的旅游數(shù)據(jù),旅游者對(duì)于旅游景點(diǎn)的個(gè)性化服務(wù)的需求也越來(lái)越強(qiáng)烈,研究高效、準(zhǔn)確的個(gè)性化旅游景點(diǎn)推薦系統(tǒng)具有很好的應(yīng)用價(jià)值。本文針對(duì)個(gè)性化旅游景點(diǎn)推薦的應(yīng)用需求,借助于社交網(wǎng)絡(luò)與貝葉斯網(wǎng)絡(luò),充分挖掘用戶與景點(diǎn)之間的匹配度進(jìn)行個(gè)性推薦。本文主要研究工作如下:(1)提出基于社交網(wǎng)絡(luò)的個(gè)性化旅游景點(diǎn)推薦算法。為了提高旅游景點(diǎn)推薦的準(zhǔn)確率,解決新用戶冷啟動(dòng)問(wèn)題,該算法將社交網(wǎng)絡(luò)因子加入到旅游景點(diǎn)推薦中,充分挖掘用戶間的社會(huì)化網(wǎng)絡(luò)關(guān)系。該算法處理過(guò)程如下:首先,采用耦合雙向聚類算法對(duì)用戶進(jìn)行聚類處理;然后,使用DBSCAN算法對(duì)景點(diǎn)聚類;最后將兩個(gè)穩(wěn)定的用戶集合和景點(diǎn)集合應(yīng)用在個(gè)性化推薦算法上,預(yù)測(cè)用戶下一個(gè)即將去的景點(diǎn)。在數(shù)據(jù)集上將該算法與一些傳統(tǒng)的算法進(jìn)行了對(duì)比實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明本文提出的算法具有較高的推薦準(zhǔn)確率。(2)為了量化旅游景點(diǎn)推薦,本文提出基于貝葉斯網(wǎng)絡(luò)學(xué)習(xí)的個(gè)性化旅游景點(diǎn)推薦算法。該算法為了解決新用戶與新景點(diǎn)的問(wèn)題,綜合使用了用戶的人口統(tǒng)計(jì)學(xué)信息,用戶-景點(diǎn)評(píng)分信息以及景點(diǎn)屬性。具體地,該算法首先使用傳統(tǒng)的協(xié)同過(guò)濾算法處理用戶屬性相似度與用戶行為相似度,使用基于內(nèi)容的算法處理景點(diǎn)間關(guān)系;然后,使用貝葉斯概率模型計(jì)算出用戶訪問(wèn)每個(gè)景點(diǎn)的概率;最后,將此算法在攜程網(wǎng)數(shù)據(jù)集上與傳統(tǒng)的算法進(jìn)行實(shí)驗(yàn)驗(yàn)證,結(jié)果表明該算法在處理新用戶和新景點(diǎn)問(wèn)題上具有更好的性能。
[Abstract]:With the widespread popularity of the mobile Internet and the deepening requirements of tourists for the quality of tourism services, online tourism, mobile tourism and other services are also gradually rising. Personalized recommendation of online tourist attractions has gradually become an application and research hotspot in the field of personalized recommendation technology. In the face of the huge and complicated tourism data, tourists' demand for personalized tourist attractions service is becoming more and more intense. Therefore, the study of highly efficient and accurate personalized recommendation system of tourist attractions has a good application value. This paper aims at the application demand of personalized tourist attraction recommendation, with the help of social network and Bayesian network, fully excavates the matching degree between user and scenic spot to carry on personality recommendation. The main research work of this paper is as follows: (1) A social-networking based personalized recommendation algorithm for tourist attractions is proposed. In order to improve the accuracy of recommendation of tourist attractions and solve the cold start problem of new users, the algorithm adds the social network factor to the recommendation of tourist attractions, and fully excavates the social network relationship among users. The processing process of the algorithm is as follows: firstly, the coupled bidirectional clustering algorithm is used to cluster the users; then, the DBSCAN algorithm is used to cluster the scenic spots. Finally, two stable user sets and attraction sets are applied to the personalized recommendation algorithm to predict the next destination that users will go to. The experimental results show that the proposed algorithm has a high recommendation accuracy. (2) in order to quantify the recommendation of tourist attractions, the proposed algorithm is compared with some traditional algorithms. This paper proposes a personalized recommendation algorithm for tourist attractions based on Bayesian network learning. In order to solve the problem of new users and new scenic spots, the algorithm uses the demographic information of users, the information of user-scenic spot score and the properties of scenic spots. Firstly, the traditional collaborative filtering algorithm is used to deal with the similarity between user attributes and user behavior, and the content-based algorithm is used to deal with the relationship between scenic spots. Then, the Bayesian probability model is used to calculate the probability of user visiting each scenic spot. Finally, the algorithm is tested on Ctrip data set with the traditional algorithm. The results show that the algorithm has better performance in dealing with new users and new scenic spots.
【學(xué)位授予單位】:天津理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Bruce Antelman;李雯;;社交網(wǎng)絡(luò)[J];高校圖書館工作;2008年01期

2 ;基于位置的手機(jī)社交網(wǎng)絡(luò)“貝多”正式發(fā)布[J];中國(guó)新通信;2008年06期

3 曹增輝;;社交網(wǎng)絡(luò)更偏向于用戶工具[J];信息網(wǎng)絡(luò);2009年11期

4 ;美國(guó):印刷企業(yè)青睞社交網(wǎng)絡(luò)營(yíng)銷新方式[J];中國(guó)包裝工業(yè);2010年Z1期

5 李智惠;柳承燁;;韓國(guó)移動(dòng)社交網(wǎng)絡(luò)服務(wù)的類型分析與促進(jìn)方案[J];現(xiàn)代傳播(中國(guó)傳媒大學(xué)學(xué)報(bào));2010年08期

6 賈富;;改變一切的社交網(wǎng)絡(luò)[J];互聯(lián)網(wǎng)天地;2011年04期

7 譚拯;;社交網(wǎng)絡(luò):連接與發(fā)現(xiàn)[J];廣東通信技術(shù);2011年07期

8 陳一舟;;社交網(wǎng)絡(luò)的發(fā)展趨勢(shì)[J];傳媒;2011年12期

9 殷樂(lè);;全球社交網(wǎng)絡(luò)新態(tài)勢(shì)及文化影響[J];新聞與寫作;2012年01期

10 許麗;;社交網(wǎng)絡(luò):孤獨(dú)年代的集體狂歡[J];上海信息化;2012年09期

相關(guān)會(huì)議論文 前10條

1 趙云龍;李艷兵;;社交網(wǎng)絡(luò)用戶的人格預(yù)測(cè)與關(guān)系強(qiáng)度研究[A];第七屆(2012)中國(guó)管理學(xué)年會(huì)商務(wù)智能分會(huì)場(chǎng)論文集(選編)[C];2012年

2 宮廣宇;李開(kāi)軍;;對(duì)社交網(wǎng)絡(luò)中信息傳播的分析和思考——以人人網(wǎng)為例[A];首屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎(jiǎng)?wù)撐腫C];2010年

3 楊子鵬;喬麗娟;王夢(mèng)思;楊雪迎;孟子冰;張禹;;社交網(wǎng)絡(luò)與大學(xué)生焦慮緩解[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國(guó)心理學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年

4 畢雪梅;;體育虛擬社區(qū)中的體育社交網(wǎng)絡(luò)解析[A];第九屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(4)[C];2011年

5 杜p,

本文編號(hào):2406257


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2406257.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶198a1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
91日韩欧美国产视频| 蜜桃av人妻精品一区二区三区| 日韩精品小视频在线观看| 日本道播放一区二区三区| 国产又粗又硬又大又爽的视频| 欧美精品中文字幕亚洲| 欧美一级不卡视频在线观看| 亚洲精品国产美女久久久99| 亚洲第一区欧美日韩在线| 日韩精品视频高清在线观看| 空之色水之色在线播放| 91超频在线视频中文字幕| 日韩成人h视频在线观看| 东京干男人都知道的天堂| 国产一区二区久久综合| 日韩精品中文字幕在线视频| 日本午夜乱色视频在线观看| 国产一区二区三区香蕉av| 欧美人禽色视频免费看| 亚洲高清亚洲欧美一区二区| 亚洲乱码av中文一区二区三区| 亚洲国产欧美精品久久| 国产麻豆视频一二三区| 亚洲国产成人av毛片国产| 老鸭窝老鸭窝一区二区| 亚洲av熟女国产一区二区三区站| 微拍一区二区三区福利| 欧美日韩国产成人高潮| 日韩特级黄片免费在线观看| 日韩人妻免费视频一专区| 亚洲精品中文字幕无限乱码| 黄片免费播放一区二区| 国产一级内片内射免费看| 丁香七月啪啪激情综合| 亚洲综合激情另类专区老铁性 | 国产精品人妻熟女毛片av久| 国产中文字幕一区二区| 日韩黄片大全免费在线看| 亚洲av秘片一区二区三区| 日韩特级黄片免费观看| 欧美久久一区二区精品|