個(gè)性化旅游景點(diǎn)推薦研究
[Abstract]:With the widespread popularity of the mobile Internet and the deepening requirements of tourists for the quality of tourism services, online tourism, mobile tourism and other services are also gradually rising. Personalized recommendation of online tourist attractions has gradually become an application and research hotspot in the field of personalized recommendation technology. In the face of the huge and complicated tourism data, tourists' demand for personalized tourist attractions service is becoming more and more intense. Therefore, the study of highly efficient and accurate personalized recommendation system of tourist attractions has a good application value. This paper aims at the application demand of personalized tourist attraction recommendation, with the help of social network and Bayesian network, fully excavates the matching degree between user and scenic spot to carry on personality recommendation. The main research work of this paper is as follows: (1) A social-networking based personalized recommendation algorithm for tourist attractions is proposed. In order to improve the accuracy of recommendation of tourist attractions and solve the cold start problem of new users, the algorithm adds the social network factor to the recommendation of tourist attractions, and fully excavates the social network relationship among users. The processing process of the algorithm is as follows: firstly, the coupled bidirectional clustering algorithm is used to cluster the users; then, the DBSCAN algorithm is used to cluster the scenic spots. Finally, two stable user sets and attraction sets are applied to the personalized recommendation algorithm to predict the next destination that users will go to. The experimental results show that the proposed algorithm has a high recommendation accuracy. (2) in order to quantify the recommendation of tourist attractions, the proposed algorithm is compared with some traditional algorithms. This paper proposes a personalized recommendation algorithm for tourist attractions based on Bayesian network learning. In order to solve the problem of new users and new scenic spots, the algorithm uses the demographic information of users, the information of user-scenic spot score and the properties of scenic spots. Firstly, the traditional collaborative filtering algorithm is used to deal with the similarity between user attributes and user behavior, and the content-based algorithm is used to deal with the relationship between scenic spots. Then, the Bayesian probability model is used to calculate the probability of user visiting each scenic spot. Finally, the algorithm is tested on Ctrip data set with the traditional algorithm. The results show that the algorithm has better performance in dealing with new users and new scenic spots.
【學(xué)位授予單位】:天津理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Bruce Antelman;李雯;;社交網(wǎng)絡(luò)[J];高校圖書館工作;2008年01期
2 ;基于位置的手機(jī)社交網(wǎng)絡(luò)“貝多”正式發(fā)布[J];中國(guó)新通信;2008年06期
3 曹增輝;;社交網(wǎng)絡(luò)更偏向于用戶工具[J];信息網(wǎng)絡(luò);2009年11期
4 ;美國(guó):印刷企業(yè)青睞社交網(wǎng)絡(luò)營(yíng)銷新方式[J];中國(guó)包裝工業(yè);2010年Z1期
5 李智惠;柳承燁;;韓國(guó)移動(dòng)社交網(wǎng)絡(luò)服務(wù)的類型分析與促進(jìn)方案[J];現(xiàn)代傳播(中國(guó)傳媒大學(xué)學(xué)報(bào));2010年08期
6 賈富;;改變一切的社交網(wǎng)絡(luò)[J];互聯(lián)網(wǎng)天地;2011年04期
7 譚拯;;社交網(wǎng)絡(luò):連接與發(fā)現(xiàn)[J];廣東通信技術(shù);2011年07期
8 陳一舟;;社交網(wǎng)絡(luò)的發(fā)展趨勢(shì)[J];傳媒;2011年12期
9 殷樂(lè);;全球社交網(wǎng)絡(luò)新態(tài)勢(shì)及文化影響[J];新聞與寫作;2012年01期
10 許麗;;社交網(wǎng)絡(luò):孤獨(dú)年代的集體狂歡[J];上海信息化;2012年09期
相關(guān)會(huì)議論文 前10條
1 趙云龍;李艷兵;;社交網(wǎng)絡(luò)用戶的人格預(yù)測(cè)與關(guān)系強(qiáng)度研究[A];第七屆(2012)中國(guó)管理學(xué)年會(huì)商務(wù)智能分會(huì)場(chǎng)論文集(選編)[C];2012年
2 宮廣宇;李開(kāi)軍;;對(duì)社交網(wǎng)絡(luò)中信息傳播的分析和思考——以人人網(wǎng)為例[A];首屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎(jiǎng)?wù)撐腫C];2010年
3 楊子鵬;喬麗娟;王夢(mèng)思;楊雪迎;孟子冰;張禹;;社交網(wǎng)絡(luò)與大學(xué)生焦慮緩解[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國(guó)心理學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
4 畢雪梅;;體育虛擬社區(qū)中的體育社交網(wǎng)絡(luò)解析[A];第九屆全國(guó)體育科學(xué)大會(huì)論文摘要匯編(4)[C];2011年
5 杜p,
本文編號(hào):2406257
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2406257.html