基于情感字集的中文情感傾向性分類研究
[Abstract]:Emotional preference classification generally refers to the emotional polarity of the text, such as positive, negative, neutral, etc. In big data's time, it was mainly used to investigate the attitude of the public towards a certain event, person or group. Traditional methods are especially time-consuming and have great limitations. Nowadays, it is more rapid and convenient to get the opinions of others by searching the vast amount of information on the Internet, and the reliability of the opinions obtained from these information is often higher. This paper first analyzes the situation of Chinese affective preference classification based on affective dictionary and carries on the traditional Chinese affective tendency classification experiment by using ICTCLAS participle and Know-net emotion dictionary. After analyzing and summing up the experimental results, It is found that no matter which kind of word segmentation tool or emotion dictionary is used, it will bring some uncertain interference to the classification results of affective tendency, especially different emotion dictionaries have great differences in reliability and category of analysis. In view of the above, this paper proposes the concept of "affective word set", which is not only independent of the usage category but also does not need Chinese word segmentation. So the first thing here is to find out such a set of emotional words: the words themselves can affect the emotional tendency of the words after the words, or the word itself has a strong emotional tendency. In this paper, two different versions of "affective word sets" are mined from two different sources, and the two versions are experimented with to obtain different experimental results. Finally, the better version of the experiment is chosen to improve the calculation method of affective tendency. Because there is no participle process, the common negative words and degree words are summed up and arranged separately, and the influence of these negative words and degree words on the affective words is added to the experimental algorithm. The affective preference classification based on the affective word set is calculated according to the emotion value of each word when calculating the affective tendency value of the sentence, and all the words are completely independent. Some special phrases may affect the emotional tendency of sentences after they are split, so we use the maximum forward matching method to identify these words. Finally, by searching the correlation between words, the information entropy of the words of the same continuous type is reduced, and the accuracy of the experiment is further improved. The highest accuracy rate is nearly 20% higher than that of the traditional words.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.1
【參考文獻】
相關(guān)期刊論文 前10條
1 李婷婷;姬東鴻;;基于SVM和CRF多特征組合的微博情感分析[J];計算機應(yīng)用研究;2015年04期
2 朱璽;董喜雙;關(guān)毅;劉志廣;;基于半監(jiān)督學習的微博情感傾向性分析[J];山東大學學報(理學版);2014年11期
3 楊麗tD;;漢字字體設(shè)計中造型的情感表現(xiàn)方式[J];設(shè)計;2014年09期
4 劉姍;胡勇;;中文網(wǎng)絡(luò)話題評論文本語義傾向分析[J];信息安全與通信保密;2012年06期
5 謝麗星;周明;孫茂松;;基于層次結(jié)構(gòu)的多策略中文微博情感分析和特征抽取[J];中文信息學報;2012年01期
6 吳亮;;一種改進的最大匹配分詞算法研究[J];現(xiàn)代商貿(mào)工業(yè);2010年09期
7 楊超;馮時;王大玲;楊楠;于戈;;基于情感詞典擴展技術(shù)的網(wǎng)絡(luò)輿情傾向性分析[J];小型微型計算機系統(tǒng);2010年04期
8 張小艷;宋麗平;;論文本分類中特征選擇方法[J];現(xiàn)代情報;2009年03期
9 吳志杰;;機器翻譯中漢語詞語切分的現(xiàn)狀——漢語分詞與漢英機器翻譯研究系列之一[J];外語研究;2009年01期
10 周立柱;賀宇凱;王建勇;;情感分析研究綜述[J];計算機應(yīng)用;2008年11期
相關(guān)博士學位論文 前1條
1 吳苑斌;情感傾向分析中的結(jié)構(gòu)化方法[D];復(fù)旦大學;2012年
相關(guān)碩士學位論文 前8條
1 李明;面向微博電影評論的情感分類研究[D];云南財經(jīng)大學;2014年
2 樊小超;基于機器學習的中文文本主題分類及情感分類研究[D];南京理工大學;2014年
3 陳曉東;基于情感詞典的中文微博情感傾向分析研究[D];華中科技大學;2012年
4 張立;基于新聞評論數(shù)據(jù)的K-means聚類算法的研究[D];太原理工大學;2010年
5 楊超;基于情感詞典擴展技術(shù)的網(wǎng)絡(luò)輿情傾向性分析[D];東北大學;2009年
6 邸錦;基于支持向量機的文本分類問題的研究[D];北京交通大學;2008年
7 劉偉;基于限定領(lǐng)域的問句相似度[D];天津師范大學;2008年
8 鄭偉;基于類別均衡的文本分類算法研究[D];西安電子科技大學;2006年
,本文編號:2391262
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2391262.html