一種基于鏈接和語義關聯(lián)的知識圖示化方法
發(fā)布時間:2018-12-24 13:57
【摘要】:將海量的知識梳理成人類更容易接受的形式,一直是數(shù)據(jù)分析領域的難題.大多數(shù)傳統(tǒng)分析方式直接對知識本身進行總結(jié)和描述概念化(conceptualization);而一些教育實踐證明,從臨近的知識單元進行刻畫圖示化(schematization)更容易使一個知識點被人類接受.在目前的經(jīng)典計算機知識表達方法中,知識圖示化主要依靠人工整理完成.提出了一種利用計算機自動化完成知識圖示化的方法,依托維基百科概念拓撲圖,探究概念與其臨近概念的關系,并且提出了基于鏈接的自動篩選最關聯(lián)概念算法;使用目前最新的神經(jīng)網(wǎng)絡模型Word2Vec對概念間的語義相似度進行量化,進一步改進關聯(lián)概念算法,提高知識圖示化效果.實驗結(jié)果表明:基于鏈接的關聯(lián)概念算法取得了良好的準確率,Word2Vec模型可以有效提高關聯(lián)概念的排序效果.提出的方法能夠準確有效地主動分析知識結(jié)構(gòu),梳理知識脈絡,為科研工作者和學習者提供切實有效的建議.
[Abstract]:Combing vast amounts of knowledge into a more acceptable form has been a difficult problem in the field of data analysis. Most traditional analytical methods summarize and describe the knowledge itself directly and conceptualize (conceptualization);. Some educational practices prove that it is easier to make a knowledge point accepted by human beings by graphing (schematization) from adjacent knowledge units. In the present classical computer knowledge representation method, knowledge representation mainly depends on manual finishing. In this paper, a method of using computer automation to realize knowledge schematization is proposed, which relies on Wikipedia concept topology to explore the relationship between concept and its adjacent concept, and an algorithm for automatically selecting the most correlated concept based on link is proposed. The semantic similarity between concepts is quantified by using the latest neural network model Word2Vec to further improve the association concept algorithm and improve the effect of knowledge representation. Experimental results show that the link based association concept algorithm has good accuracy and Word2Vec model can effectively improve the ranking effect of association concepts. The proposed method can accurately and effectively analyze the knowledge structure, comb the knowledge context, and provide practical and effective advice for researchers and learners.
【作者單位】: 中國科學院大學;中國科學院軟件研究所;
【基金】:中國科學院系統(tǒng)優(yōu)化基金項目(Y42901VED2,Y42901VEB1,Y42901VEB2)~~
【分類號】:TP18;TP391.1
本文編號:2390712
[Abstract]:Combing vast amounts of knowledge into a more acceptable form has been a difficult problem in the field of data analysis. Most traditional analytical methods summarize and describe the knowledge itself directly and conceptualize (conceptualization);. Some educational practices prove that it is easier to make a knowledge point accepted by human beings by graphing (schematization) from adjacent knowledge units. In the present classical computer knowledge representation method, knowledge representation mainly depends on manual finishing. In this paper, a method of using computer automation to realize knowledge schematization is proposed, which relies on Wikipedia concept topology to explore the relationship between concept and its adjacent concept, and an algorithm for automatically selecting the most correlated concept based on link is proposed. The semantic similarity between concepts is quantified by using the latest neural network model Word2Vec to further improve the association concept algorithm and improve the effect of knowledge representation. Experimental results show that the link based association concept algorithm has good accuracy and Word2Vec model can effectively improve the ranking effect of association concepts. The proposed method can accurately and effectively analyze the knowledge structure, comb the knowledge context, and provide practical and effective advice for researchers and learners.
【作者單位】: 中國科學院大學;中國科學院軟件研究所;
【基金】:中國科學院系統(tǒng)優(yōu)化基金項目(Y42901VED2,Y42901VEB1,Y42901VEB2)~~
【分類號】:TP18;TP391.1
【相似文獻】
相關期刊論文 前8條
1 嚴亞勤;邱健;訾鵬;;一種基于Web的電網(wǎng)圖示化編輯器的設計與實現(xiàn)[J];電力系統(tǒng)保護與控制;2010年08期
2 馮林橋,許文玉,陳湘波,劉再芳;圖示化電網(wǎng)智能識別技術及其應用[J];電力系統(tǒng)及其自動化學報;2005年02期
3 周媛,馮林橋,張午陽,陳湘波;圖示化智能供配電網(wǎng)設計系統(tǒng)[J];電力自動化設備;2005年07期
4 焦煜;;Unix系統(tǒng)配置的圖示化方法[J];福建電腦;2012年01期
5 倪慧莉;楊芳;;一種電子商務業(yè)務建模的圖示化方法[J];計算機應用與軟件;2009年04期
6 陳溪輝;多數(shù)據(jù)表信息的顯示及圖示化分析技術[J];福建電腦;2004年02期
7 沈棟;;如何讓你的PPT更加直觀[J];電腦愛好者;2011年01期
8 ;[J];;年期
相關會議論文 前1條
1 畢明波;;關于會計教學圖示化的探索[A];2006年山東省會計學會優(yōu)秀論文征文[C];2006年
相關碩士學位論文 前3條
1 張曉霖;從圖示化到概念合成,翻譯過程中的意義構(gòu)建[D];北京外國語大學;2015年
2 劉晶;西藏米林縣瓊林珞巴村空間特征圖示化研究[D];中國建筑設計研究院;2011年
3 劉飛;圖示化電力軟件與AutoCAD的接口研究[D];湖南大學;2003年
,本文編號:2390712
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2390712.html
最近更新
教材專著