雙視場運(yùn)動目標(biāo)智能監(jiān)控系統(tǒng)研究
[Abstract]:Intelligent monitoring technology has always been a hot topic in the field of computer vision. With the improvement of the quality of life, the traditional monitoring system can not meet the needs of people. In order to solve the problems of limited clarity and large redundant data amount in traditional monitoring system, this paper presents an intelligent monitoring system for moving targets with two fields of view with multiple cameras. The wide field of view main camera is responsible for the overall monitoring of the wide field of view, and the narrow field of view is responsible for actively tracking the designated moving target from the camera, and the narrow field of view is responsible for obtaining the high resolution target image from the camera. The main work and innovations of this paper are summarized as follows: (1) different from the traditional multi-camera system, this paper divides the cameras of the surveillance system and replaces the video sequences with high-resolution moving target images. On the premise of controlling the amount of redundant data generated by the control system, both the global monitoring and the detailed information of the moving object are realized. (2) the image distortion correction algorithm, the moving target detection algorithm, the image distortion correction algorithm, the moving target detection algorithm, the image distortion correction algorithm, the moving target detection algorithm, The moving target tracking algorithm and the target handover algorithm are studied and implemented respectively. The techniques of camera calibration, background difference method, color feature matching, and different color space are studied in detail. Corner matching technology based on SURF (Speeded Up Robust features) algorithm and ORB (Oriented FAST and Rotated BRIEF) algorithm. (3) based on the concept of information entropy, the background difference method for moving target detection is improved. The improved algorithm takes into account the computation speed and the detection accuracy. (4) aiming at the application of this paper, a new algorithm of moving target handover is proposed, which combines corner feature and color feature. It realizes the real-time and accurate transfer of the moving object in the double field of view. (5) the video acquisition module, the image correction module, the moving target detection module and the target handover module are realized by using C language on the VS2010 (Microsoft Visual Studio2010 platform. PTZ (Pan-Tilt-Zoom) camera control module and moving target active tracking module.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 賀小花;;智慧城市中視頻監(jiān)控大數(shù)據(jù)建設(shè)漸入佳境[J];中國公共安全;2015年17期
2 陽小燕;任家富;劉長江;;基于視野分界線的多攝像機(jī)運(yùn)動目標(biāo)跟蹤算法[J];計(jì)算機(jī)工程與應(yīng)用;2016年09期
3 郭寧;呂俊偉;鄧江生;;光電跟蹤系統(tǒng)純角度濾波器的設(shè)計(jì)[J];光學(xué)精密工程;2013年07期
4 李哲;項(xiàng)輝宇;韓寶安;黃佳軍;;基于HALCON的雙目視覺系統(tǒng)標(biāo)定[J];機(jī)電產(chǎn)品開發(fā)與創(chuàng)新;2013年03期
5 連曉峰;張_";戴軍;劉載文;王小藝;;基于視頻流的運(yùn)動人體檢測方法研究[J];北京工商大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
6 梁國山;朱秀昌;;用于運(yùn)動人體檢測的改進(jìn)的幀差法[J];電視技術(shù);2009年S1期
相關(guān)博士學(xué)位論文 前1條
1 袁國武;智能視頻監(jiān)控中的運(yùn)動目標(biāo)檢測和跟蹤算法研究[D];云南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 陸偉;運(yùn)動目標(biāo)檢測與跟蹤算法的研究及應(yīng)用[D];安徽理工大學(xué);2016年
2 郭子選;基于雙目立體視覺的三維重建技術(shù)研究[D];貴州師范大學(xué);2016年
3 杜永勝;基于運(yùn)動特征的視頻網(wǎng)絡(luò)多目標(biāo)匹配和跟蹤方法研究[D];電子科技大學(xué);2016年
4 岳兵;基于OpenCV的目標(biāo)檢測與跟蹤算法的研究與實(shí)現(xiàn)[D];安徽大學(xué);2016年
5 李杰;智能視頻監(jiān)控系統(tǒng)中運(yùn)動目標(biāo)跟蹤算法研究[D];云南大學(xué);2016年
6 肖玉潔;雙視場運(yùn)動目標(biāo)檢測與主動跟蹤系統(tǒng)研究[D];華東師范大學(xué);2016年
7 張婷;基于特征快速配準(zhǔn)的圖像拼接技術(shù)的研究與實(shí)現(xiàn)[D];華東師范大學(xué);2016年
8 陶雪焦;圖像序列中特征點(diǎn)的檢測提取及匹配跟蹤研究[D];浙江理工大學(xué);2016年
9 郭淼;智能視頻監(jiān)控系統(tǒng)中交疊視域下的目標(biāo)交接技術(shù)研究[D];南京航空航天大學(xué);2015年
10 趙玉茹;基于SURF和灰度投影的快速圖像匹配算法研究[D];天津大學(xué);2014年
,本文編號:2388850
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2388850.html