基于高分辨率光譜圖像采集及混合模型的植物病害檢測方法
[Abstract]:It has become the trend of crop disease diagnosis based on digitized and undamaged plant disease recognition. Aiming at the complex symptom of plant disease and the low detection efficiency of the existing diagnosis technology based on single image contrast recognition, etc. Comprehensive use of spectral imaging, spectral analysis, spectral database technology, color science and other fields of knowledge, to develop rapid, non-destructive detection of major plant leaf diseases, On this basis, the rapid detection model and the disease diagnosis system are established. Based on the high resolution spectral image format, a universal data structure is proposed, which is especially suitable for fast processing of spectral data of high resolution image. Combined with SQL Server database, based on the above high resolution spectral imaging system, hundreds of samples of horticultural plants such as trees were cultured, collected and analyzed. A large number of images and spectral data of horticultural diseases were obtained. The spectral law and color difference of various crop diseases in different time periods provide data basis. The results of this paper provide a new method for the rapid diagnosis of plant diseases, and provide examples for the application of computer technology, information technology and spectral technology in agriculture, which has important theoretical and practical significance. This paper begins with the background of the subject, on the basis of expounding the related theories of imaging spectrum technology and plant disease detection, starting with the data structure of spectral imaging cube, introduces the principle of spectral imaging technology and the common spectral imaging technology. The hardware system of spectral imaging based on disease detection and LCTF is built. Then, the local and network data storage structures of spectral image data are discussed, and a database model and localized storage model for high-resolution spectral image data are proposed. The data processing and related software of LCTF spectral imaging system are designed. Finally, by comparing principal component analysis (PCA), linear discriminant analysis (LDA), neural network (Ann) and other commonly used feature extraction methods, the suitable degree of their application in disease discriminant analysis is analyzed. A stepwise discriminant model based on Fisher method is proposed for spectral dimensionality reduction and RBF neural network is used to test the spectral classification ability before and after dimensionality reduction.
【學位授予單位】:遼寧科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:S43;TP391.41
【相似文獻】
相關(guān)期刊論文 前2條
1 劉啟航;周強;;蝗蟲視覺光譜效應(yīng)與趨光響應(yīng)光譜的對比測定[J];光譜學與光譜分析;2014年07期
2 ;[J];;年期
相關(guān)會議論文 前2條
1 朱福榮;黃偉慶;;1μm-1.65μm光譜范圍濾光片的研制[A];中國光學學會2006年學術(shù)大會論文摘要集[C];2006年
2 張鵬斌;蘇云;鄭國憲;;一種用于行星大氣光譜探測的新型空間外差光譜儀[A];中國空間科學學會空間探測專業(yè)委員會第二十六屆全國空間探測學術(shù)研討會會議論文集[C];2013年
相關(guān)博士學位論文 前7條
1 萬磊;固態(tài)氫基質(zhì)隔離分子高分辨光譜裝置和部分應(yīng)用[D];中國科學技術(shù)大學;2009年
2 王新北;基于傅立葉紅外光譜儀的材料光譜發(fā)射率測量技術(shù)的研究[D];哈爾濱工業(yè)大學;2007年
3 熊嬋;基于多維多模式超光譜系統(tǒng)的復(fù)雜混合溶液成分分析[D];天津大學;2012年
4 馬振鶴;光譜光學相干層析成像理論與實驗研究[D];天津大學;2007年
5 方宇;高/超光譜遙感數(shù)據(jù)降維算法研究[D];華中科技大學;2014年
6 洪新華;衍/折射光學系統(tǒng)消二級光譜的研究[D];中國科學院研究生院(西安光學精密機械研究所);2005年
7 吳雪梅;結(jié)合信號處理技術(shù)的近紅外光譜分析新方法研究[D];西北大學;2014年
相關(guān)碩士學位論文 前10條
1 柳文娟;新型高分辨率激光光譜技術(shù)研究[D];浙江大學;2015年
2 張凱華;基于光柵單色儀的光譜發(fā)射率測量裝置[D];河南師范大學;2015年
3 臧延哲;氛圍條件材料光譜發(fā)射率測量實驗研究[D];長春理工大學;2016年
4 鄭水欽;基于光譜操控的超快光學技術(shù)研究[D];深圳大學;2016年
5 許開品;銅、鋼和鐵的光譜發(fā)射率的研究[D];河南師范大學;2016年
6 張逸;基于高分辨率光譜圖像采集及混合模型的植物病害檢測方法[D];遼寧科技大學;2016年
7 羅天舒;上皮組織層結(jié)構(gòu)的非線性光譜分辨成像技術(shù)研究[D];福建師范大學;2008年
8 王東;新型多光譜偏振成像技術(shù)研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2015年
9 陸運章;用于礦石成分分析的激光誘導(dǎo)擊穿光譜定量化測量技術(shù)研究[D];北京交通大學;2009年
10 張琴;太陽能涂層光譜發(fā)射率測量儀的研制[D];哈爾濱工業(yè)大學;2011年
,本文編號:2383232
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2383232.html