牛膝、川牛膝、防風(fēng)各組織、性狀的特征提取與模式識別
[Abstract]:Objective: to establish a method of stitching the microimages of Radix Achyranthes bidentata, Radix Achyranthes bidentata and Radix Astragali on cross section, and to extract the tissue distribution characteristics of Chinese medicinal materials. The characters of Chinese medicinal materials were extracted from the images of Radix Achyranthes bidentata, Radix Achyranthes bidentata and Radix Fangfeng. Combined with various digital image processing techniques, a medicinal identification system based on the tissue and character characteristics of Chinese medicinal materials was established to realize pattern recognition of traditional Chinese medicine images and to provide new ideas and methods for the study of traditional Chinese medicine identification. Methods: the method of tissue feature extraction and identification was as follows: the middle part of the sample was prepared by polyethylene glycol embedding method. Microscope and electronic eyepiece were used to photograph the whole transverse slice in turn. Using Matlab as the programming platform, the block matching method based on pyramid hierarchical search strategy is used for image registration, and the wavelet fusion algorithm based on direct average gray level adjustment is used for image fusion to complete the microscopic image mosaic of medicinal materials. The sobel operator based on improved four-direction edge detection and mathematical morphology are used to segment and extract the microscopic image. The pattern recognition is carried out by BP neural network method Bayesian classification method and k-nearest neighbor classification method. The method of character feature extraction and recognition: taking the image of medicinal materials by camera, taking Matlab as the programming platform, using the best threshold segmentation method of s component based on hsv color space to segment the image of medicinal materials, extracting the feature, using BP neural network method. Bayesian classification and K-nearest neighbor classification are used for feature recognition. Finally, a GUI. based on Matlab programming platform is constructed for the tissue features of medicinal materials and character features from image extraction to pattern recognition. Results: (1) the methods of stitching the microimages of Radix Achyranthes bidentata, Radix Achyranthes bidentata and Radix angelicae officinalis were established. (2) the Matlab programming platform was established for the mosaic of the images of Achyranthes bidentata and Radix Achyranthes bidentata. GUI of different medicinal materials and GUI. (3) of pattern recognition of Chinese medicinal materials were identified by using k- nearest neighbor classification, Bayesian classification and BP neural network method. In terms of tissue characteristics, different training samples were randomly selected. The average recognition rate of the three pattern recognition methods for medicinal materials was 93.898. 2% (n = 75). In terms of traits, different training samples were randomly selected. The average recognition rate of the three pattern recognition methods was 91.78% (n = 150), and the average recognition rate was 91.78% (n = 150). At the same time, the average recognition rate of the three pattern recognition methods for medicinal materials was 91.6% and 99.6% (n = 75), respectively, on the basis of the comprehensive tissue and character characteristics, and different training samples were selected randomly. The average recognition rates of the three pattern recognition methods were 91.6% and 99.6% (n = 75), respectively. In the experiment, Bayesian classification method was used to identify the samples with the highest recognition rate (99.6%). Conclusion: in microscopic image mosaic, block matching based on pyramid hierarchical search strategy is used for image registration, and wavelet fusion algorithm based on direct average gray level adjustment can ensure the speed of image stitching. The precision of image stitching is guaranteed, and it can be used in cross-section micro-image of Chinese herbal medicine. The selected feature extraction method is simple, fast and suitable for segmentation of various images and description of identification features of Chinese medicinal materials. The results of different pattern recognition methods in different medicinal materials were compared. Bayesian classification was used to identify the characters and tissue characteristics of medicinal materials, which provided the basis for the automatic identification of Chinese medicinal materials. The automatic identification GUI is a graphical user interface with human-computer interaction, which eliminates the tedious program code processing, and provides a more convenient and quick operation for automatic identification of Chinese medicinal materials.
【學(xué)位授予單位】:廣州中醫(yī)藥大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R282.5;TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 嚴紅平;潘春洪;;模式識別簡述[J];自動化博覽;2006年01期
2 楊合超;宋海歌;周雪梅;;模式識別的主要方法及其應(yīng)用[J];電腦知識與技術(shù);2008年S2期
3 溫星;;淺談人類模式識別的特點[J];山西經(jīng)濟管理干部學(xué)院學(xué)報;2008年01期
4 ;2009年全國模式識別學(xué)術(shù)會議暨中日韓模式識別學(xué)術(shù)研討會征文通知[J];模式識別與人工智能;2009年02期
5 ;2010年全國模式識別學(xué)術(shù)會議[J];智能系統(tǒng)學(xué)報;2010年02期
6 趙志宇;常健;;模式識別概述及其應(yīng)用[J];信息與電腦(理論版);2010年10期
7 譚詠梅;王小捷;鐘義信;;模式識別課程的教學(xué)探索[J];計算機教育;2011年15期
8 丁雪;劉穎;;復(fù)雜工業(yè)場景模式識別的探索與研究[J];科技創(chuàng)新導(dǎo)報;2012年35期
9 高貴;周石琳;孫即祥;何鵑;;提升“模式識別新技術(shù)研討”教學(xué)質(zhì)量[J];電氣電子教學(xué)學(xué)報;2013年04期
10 施鵬飛;模式識別[J];自然雜志;1982年01期
相關(guān)會議論文 前10條
1 張如浩;趙巍;齊永和;;人類形象思維模式識別與機器模式識別之探討[A];1995年中國智能自動化學(xué)術(shù)會議暨智能自動化專業(yè)委員會成立大會論文集(下冊)[C];1995年
2 李瑞宏;李薄山;肖薇;;模式識別與病毒對抗[A];第十一屆全國計算機安全技術(shù)交流會論文集[C];1996年
3 王箏;楊德超;高軍濤;許翱翔;歐陽楷;;兔嗅覺神經(jīng)的動力學(xué)研究——模式識別的穩(wěn)健性[A];21世紀醫(yī)學(xué)工程學(xué)術(shù)研討會論文摘要匯編[C];2001年
4 吳曉明;盛元生;王克明;沙云東;李宴喜;;航空結(jié)構(gòu)聲疲勞應(yīng)力的仿真與模式識別[A];2003年中國智能自動化會議論文集(下冊)[C];2003年
5 張開銀;;模式識別中的信息融合方法——二次決策[A];第二屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2004年
6 趙健;俞卞章;;小波與神經(jīng)網(wǎng)絡(luò)在模式識別中應(yīng)用的研究[A];中國儀器儀表學(xué)會第三屆青年學(xué)術(shù)會議論文集(上)[C];2001年
7 崔建國;王旭;張大千;王少曼;張威;;基于磁場刺激與神經(jīng)網(wǎng)絡(luò)肌電信號的模式識別[A];第三屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2005年
8 ;紅外偏振圖像的模式識別[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會論文(摘要)集[C];2013年
9 李永杰;李凌;廖小麗;陳華富;堯德中;;在生物醫(yī)學(xué)工程專業(yè)本科生中開設(shè)《模式識別》課程的實踐與構(gòu)想[A];中國生物醫(yī)學(xué)工程進展——2007中國生物醫(yī)學(xué)工程聯(lián)合學(xué)術(shù)年會論文集(下冊)[C];2007年
10 尹春玲;胡樂乾;蔡玉樂;張海艷;;紅外光譜法對茶葉種類的模式識別[A];中國化學(xué)會第十二屆全國應(yīng)用化學(xué)年會論文集[C];2011年
相關(guān)重要報紙文章 前7條
1 陳瑜邋唐婷;讓計算機會看、會聽、會說、會思考[N];科技日報;2007年
2 范興川 鄭華坤;計算機形象思維創(chuàng)新之路[N];科技日報;2004年
3 記者 吳苡婷;心愿:讓高科技走出“象牙塔”[N];上海科技報;2006年
4 本報記者 佘惠敏;模式識別,,行走在電腦與人腦之間[N];經(jīng)濟日報;2014年
5 張琪;當(dāng)機器搶了你的工作[N];經(jīng)濟觀察報;2012年
6 記者 邵斌;漢語走上國際口語自動翻譯平臺[N];大眾科技報;2000年
7 記者 劉垠;首屆中美視覺夏令營開營[N];大眾科技報;2009年
相關(guān)博士學(xué)位論文 前10條
1 羅頌榮;基于變量預(yù)測模型模式識別的旋轉(zhuǎn)機械故障診斷研究[D];湖南大學(xué);2015年
2 周昊飛;基于模式識別的自動化生產(chǎn)過程質(zhì)量智能診斷研究[D];鄭州大學(xué);2016年
3 徐立祥;模式識別核方法的理論研究及其應(yīng)用[D];安徽大學(xué);2017年
4 周勝靈;基于模式識別的太赫茲光譜建模及應(yīng)用研究[D];西南大學(xué);2017年
5 厲小潤;模式識別的核方法研究[D];浙江大學(xué);2007年
6 趙海峰;基于圖的模式識別及其在計算機視覺中的應(yīng)用[D];南京理工大學(xué);2011年
7 肖瀟;高維仿生信息幾何學(xué)研究及其在模式識別中的應(yīng)用[D];浙江工業(yè)大學(xué);2012年
8 顏學(xué)峰;高維復(fù)雜模式識別的新方法[D];浙江大學(xué);2002年
9 丁世飛;基于信息理論的數(shù)字模式識別及應(yīng)用研究[D];山東科技大學(xué);2004年
10 萬海平;模式識別中核方法若干問題研究[D];北京郵電大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 臧佳音;基于IGSA優(yōu)化的MLSSVR應(yīng)用研究[D];燕山大學(xué);2015年
2 趙盈;基于模式識別的結(jié)構(gòu)可靠度分析方法研究[D];廣西大學(xué);2015年
3 汪磊;基于LBS軌跡的出行活動鏈模式識別研究[D];大連交通大學(xué);2015年
4 李松;市售發(fā)酵醬油品質(zhì)分析及模式識別研究[D];吉林農(nóng)業(yè)大學(xué);2015年
5 王平光;橋梁拉索腐蝕損傷聲發(fā)射監(jiān)測及模式識別[D];大連理工大學(xué);2015年
6 賈士力;模式識別在生物信息學(xué)中的應(yīng)用[D];河北科技大學(xué);2015年
7 高芬;基于局部模型和仿生模式識別的目標(biāo)跟蹤方法研究[D];西安電子科技大學(xué);2015年
8 尹子彬;多負載模式識別計量控制系統(tǒng)[D];石家莊鐵道大學(xué);2015年
9 李龍;基于神經(jīng)網(wǎng)絡(luò)的輪式小車系統(tǒng)的模式識別研究[D];天津科技大學(xué);2013年
10 張波;基于超聲波法的GIS局部放電模式識別的研究[D];華北電力大學(xué);2015年
本文編號:2375732
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2375732.html