基于模糊C-Means的改進型KNN分類算法
發(fā)布時間:2018-12-13 01:34
【摘要】:KNN算法是一種思想簡單且容易實現(xiàn)的分類算法,但在訓(xùn)練集較大以及特征屬性較多時候,其效率低、時間開銷大.針對這一問題,論文提出了基于模糊C-means的改進型KNN分類算法,該算法在傳統(tǒng)的KNN分類算法基礎(chǔ)上引入了模糊C-means理論,通過對樣本數(shù)據(jù)進行聚類處理,用形成的子簇代替該子簇所有的樣本集,以減少訓(xùn)練集的數(shù)量,從而減少KNN分類過程的工作量、提高分類效率,使KNN算法更好地應(yīng)用于數(shù)據(jù)挖掘.通過理論分析和實驗結(jié)果表明,論文所提算法在面對較大數(shù)據(jù)時能有效提高算法的效率和精確性,滿足處理數(shù)據(jù)的需求.
[Abstract]:KNN algorithm is a simple and easy to implement classification algorithm, but when the training set is large and the feature attributes are more, its efficiency is low and the time cost is large. In order to solve this problem, an improved KNN classification algorithm based on fuzzy C-means is proposed. The fuzzy C-means theory is introduced based on the traditional KNN classification algorithm. In order to reduce the number of training sets, reduce the workload of the KNN classification process, improve the classification efficiency and make the KNN algorithm better applied to data mining. The theoretical analysis and experimental results show that the proposed algorithm can effectively improve the efficiency and accuracy of the algorithm in the face of large data and meet the needs of data processing.
【作者單位】: 鄭州輕工業(yè)學(xué)院計算機與通信工程學(xué)院;
【基金】:河南省科技攻關(guān)項目(162102210146;162102310579) 河南省教育廳科學(xué)技術(shù)研究重點項目(13A52036) 河南省高等學(xué)校青年骨干教師資助計劃項目(2014GGJS-084) 鄭州輕工業(yè)學(xué)院校級青年骨干教師培養(yǎng)對象資助計劃項目(XGGJS02);鄭州輕工業(yè)學(xué)院博士科研基金資助項目(2010BSJJ038)
【分類號】:TP311.13
[Abstract]:KNN algorithm is a simple and easy to implement classification algorithm, but when the training set is large and the feature attributes are more, its efficiency is low and the time cost is large. In order to solve this problem, an improved KNN classification algorithm based on fuzzy C-means is proposed. The fuzzy C-means theory is introduced based on the traditional KNN classification algorithm. In order to reduce the number of training sets, reduce the workload of the KNN classification process, improve the classification efficiency and make the KNN algorithm better applied to data mining. The theoretical analysis and experimental results show that the proposed algorithm can effectively improve the efficiency and accuracy of the algorithm in the face of large data and meet the needs of data processing.
【作者單位】: 鄭州輕工業(yè)學(xué)院計算機與通信工程學(xué)院;
【基金】:河南省科技攻關(guān)項目(162102210146;162102310579) 河南省教育廳科學(xué)技術(shù)研究重點項目(13A52036) 河南省高等學(xué)校青年骨干教師資助計劃項目(2014GGJS-084) 鄭州輕工業(yè)學(xué)院校級青年骨干教師培養(yǎng)對象資助計劃項目(XGGJS02);鄭州輕工業(yè)學(xué)院博士科研基金資助項目(2010BSJJ038)
【分類號】:TP311.13
【相似文獻】
相關(guān)期刊論文 前10條
1 余肖生;周寧;張芳芳;;基于KNN的圖像自動分類模型研究[J];中國圖書館學(xué)報;2007年01期
2 林甲祥;樊明輝;陳崇成;江先偉;;二階段近似KNN離群挖掘算法與應(yīng)用[J];計算機應(yīng)用;2007年10期
3 劉燦;張德賢;;KNN查詢處理算法性能研究[J];蘇州科技學(xué)院學(xué)報;2006年03期
4 羅莉;;云平臺下的基于項目的KNN協(xié)同過濾算法在煤炭系統(tǒng)中的研究與應(yīng)用[J];煤炭技術(shù);2013年05期
5 景寧,劉雨,彭甫陽;一種實用外分類算法—快速分類-折半插入算法的研究及實現(xiàn)[J];小型微型計算機系統(tǒng);1988年09期
6 鄭智捷;幻序合并分類算法[J];計算機學(xué)報;1984年05期
7 劉t,
本文編號:2375623
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2375623.html
最近更新
教材專著