基于標(biāo)簽關(guān)聯(lián)規(guī)則的協(xié)同過濾算法研究
[Abstract]:With the rapid popularization of the Internet, the development of information retrieval tools has experienced three stages: from classification navigation to search engine, and then to the present recommendation system. Recommendation systems and related recommendation technologies have unconsciously penetrated into people's lives, whether it is video sites, music sites or APP, social networking sites, or even the news sites that they visit all the time are inseparable from the recommendation technology. Everywhere you can see the traces of recommended technology. The traditional collaborative filtering recommendation algorithm has many defects, such as sparse problem, cold start problem, scalability problem, user multi-interest problem and so on. Collaborative filtering algorithm only considers the similarity between users or items to recommend to users, ignoring the subjective feelings of users. With the development of Web2.0, the tag (TAG) element added in the social tagging system provides a new way for users to express their subjective feelings about the project. Tags reflect the user's view and interest in the project, and also achieve a relatively accurate description of the project content. It is of great significance to mine the social interest of the users through the user generated content (UGC). A collaborative filtering algorithm based on tag association rules is proposed in this paper. In the process of filling the scoring matrix, the algorithm uses the item-based collaborative filtering method, which effectively solves the sparse problem of the traditional collaborative filtering algorithm. Then, the user similarity calculation is improved, user attention matrix is introduced, and the user score similarity and user concern similarity are improved. In this paper, we introduce the idea of calculating frequent itemsets in Apriori association rules, train appropriate minimum support threshold, find frequent itemsets, decompose frequent itemsets to get user interest points, and then traverse user sets backwards. Cluster the users according to the points of interest. After the user clustering is obtained, the nearest neighbor user set is obtained according to the improved user similarity method, and then the forecast score of the user is obtained. Finally, the result is recommended to the user. The experiment adopts MovieLens film score data set, and compares each recommendation algorithm through a series of experiments. Experiments show that this method can effectively reduce the impact of sparse scoring matrix and improve the prediction accuracy.
【學(xué)位授予單位】:河北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盈艷;曹妍;牟向偉;;基于項(xiàng)目評(píng)分預(yù)測(cè)的混合式協(xié)同過濾推薦[J];現(xiàn)代圖書情報(bào)技術(shù);2015年06期
2 孫光福;吳樂;劉淇;朱琛;陳恩紅;;基于時(shí)序行為的協(xié)同過濾推薦算法[J];軟件學(xué)報(bào);2013年11期
3 楊晶;成衛(wèi)青;郭常忠;;基于標(biāo)準(zhǔn)標(biāo)簽的用戶興趣模型研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2013年10期
4 朱麗中;徐秀娟;劉宇;;基于項(xiàng)目和信任的協(xié)同過濾推薦算法[J];計(jì)算機(jī)工程;2013年01期
5 彭石;周志彬;王國軍;;基于評(píng)分矩陣預(yù)填充的協(xié)同過濾算法[J];計(jì)算機(jī)工程;2013年01期
6 楊陽;向陽;熊磊;;基于矩陣分解與用戶近鄰模型的協(xié)同過濾推薦算法[J];計(jì)算機(jī)應(yīng)用;2012年02期
7 李改;李磊;;基于矩陣分解的協(xié)同過濾算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年30期
8 劉旭東;陳德人;王惠敏;;一種改進(jìn)的協(xié)同過濾推薦算法[J];武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版);2010年04期
9 馬宏偉;張光衛(wèi);李鵬;;協(xié)同過濾推薦算法綜述[J];小型微型計(jì)算機(jī)系統(tǒng);2009年07期
10 查文琴;梁昌勇;曹鐳;;基于用戶聚類的協(xié)同過濾推薦方法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2009年06期
,本文編號(hào):2370191
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2370191.html