結(jié)合Procrustes分析法和ICP算法的PICP配準算法
[Abstract]:In order to solve the problem that the traditional ICP algorithm has the problem that finding the nearest iteration points is more complex, one-way finding leads to more error point pairs, and the convergence function is easy to fall into the local optimal condition, an improved PICP algorithm based on Procrustes analysis for ICP algorithm is proposed. First, the optimal initial transformation parameters of point cloud data are found by comparing the initial transformation parameters in eight directions of 3D space and the distance values of iterative point pairs. Then the ICP algorithm is optimized by using the bidirectional search nearest iterative point mechanism, and the new point cloud data is formed by the point pairs. Finally, the least square function of point cloud data is solved by Procrustes analysis method, so that the registration accuracy is higher and the optimal convergence of ICP algorithm is completed. The registration test of dental point cloud data and rabbit standard data shows that the proposed algorithm can solve the problem of scale transformation and non-uniform point cloud registration, and the convergence of registration results is fast and the registration error is small. Compared with the traditional ICP algorithm, the proposed PICP registration algorithm has the advantages of high global convergence, less iterations and strong anti-noise ability.
【作者單位】: 成都信息工程大學(xué)電子工程學(xué)院;中國氣象局大氣探測重點開放實驗室;
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前7條
1 張東興;祝明波;李相平;張力;;Delaunay三角形剖分約束下的圖像配準算法[J];信號處理;2013年12期
2 嚴劍鋒;鄧喀中;;基于特征點提取和匹配的點云配準算法[J];測繪通報;2013年09期
3 陶海躋;達飛鵬;;一種基于法向量的點云自動配準方法[J];中國激光;2013年08期
4 張建勛;張凱文;牛文賓;;基于PCA-SIFT和馬氏距離的SAR圖像自動配準[J];重慶理工大學(xué)學(xué)報(自然科學(xué));2011年10期
5 周擁軍;寇新建;;正交Procrustes分析及其在旋轉(zhuǎn)矩陣估計中的應(yīng)用[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2009年08期
6 高鵬東;彭翔;李阿蒙;劉曉利;;ICP框架下基于表面間平均體積測度的深度像配準[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2007年06期
7 戴靜蘭;陳志楊;葉修梓;;ICP算法在點云配準中的應(yīng)用[J];中國圖象圖形學(xué)報;2007年03期
【共引文獻】
相關(guān)期刊論文 前10條
1 趙夫群;周明全;耿國華;;基于有界旋轉(zhuǎn)角的點云配準算法[J];微電子學(xué)與計算機;2017年03期
2 鄒敏;;基于ICP算法的多視點云配準方法[J];科技創(chuàng)新與生產(chǎn)力;2017年02期
3 楊玲;譙舟三;陳玲玲;楊智鵬;;結(jié)合Procrustes分析法和ICP算法的PICP配準算法[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2017年02期
4 李歡;陳志同;屈新河;;毛坯海量點集與CAD數(shù)模的自適應(yīng)快速精確配準方法研究[J];航空制造技術(shù);2017年04期
5 王鵬;O評,
本文編號:2352778
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2352778.html