圖像顯著性區(qū)域檢測(cè)模型研究及其應(yīng)用
[Abstract]:With the rapid development of computer and communication technology, image and video increasingly become the main form of carrying data information. With the explosive growth of image resources, how to quickly process and retrieve images by computer is a major challenge. Salience detection is an important step in the field of computer vision such as image retrieval, image adaptive segmentation and target recognition. Human visual systems are good at helping people find areas of interest to themselves in the face of complex scenes, and simulate human visual mechanisms to extract salient areas associated with targets. The computational resources needed for image synthesis and analysis can be allocated first for significant regions, and the efficiency of computer processing can be improved. On the basis of studying the existing salience detection models, it is concluded that the models are faced with some shortcomings, such as low accuracy, unclear contour, poor anti-noise ability and so on. So it is very important to study the accurate salience detection model. The main research work of this paper is as follows: (1) combining the advantages of local feature contrast prominent object edge and global feature contrast highlighting internal region this paper proposes a significant application of local feature and global feature contrast. Detection model (LGC model). Firstly, a simple linear iterative clustering (Simple Linear Iterative Clustering) algorithm is used to predivide the image into several compact super-pixels, then the boundary regions are selected and the boundary weights of all super-pixels are calculated. Then the local contrast of color and texture features is calculated and the global salience map is obtained by using the uniqueness of the global feature and the spatial distribution characteristic. Finally, the sum product (Sum and Product) method is used to fuse the local and global salient graphs to obtain the final significant graphs. The experimental results on the Achanta test set show that compared with the other five algorithms, the significance detection algorithm in this paper has higher accuracy and more advantages. (2) the significance detection model proposed in this paper is proposed. It is used in automatic segmentation of region of interest, content sensitive image scaling and non-realistic rendering applications. The experimental results show that the proposed model is more effective than the traditional model in image processing.
【學(xué)位授予單位】:長(zhǎng)沙理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 羅雅丹;唐振華;覃團(tuán)發(fā);;基于DCT域視覺(jué)顯著性檢測(cè)的圖像縮放算法[J];計(jì)算機(jī)應(yīng)用研究;2016年01期
2 梁淑芬;劉銀華;李立琛;;基于LBP和深度學(xué)習(xí)的非限制條件下人臉識(shí)別算法[J];通信學(xué)報(bào);2014年06期
3 金左輪;韓靜;張毅;柏連發(fā);;基于紋理顯著性的微光圖像目標(biāo)檢測(cè)[J];物理學(xué)報(bào);2014年06期
4 郭迎春;袁浩杰;吳鵬;;基于Local特征和Regional特征的圖像顯著性檢測(cè)[J];自動(dòng)化學(xué)報(bào);2013年08期
5 李崇飛;高穎慧;盧凱;曲智國(guó);;基于相位譜和調(diào)諧幅度譜的顯著性檢測(cè)方法[J];中國(guó)圖象圖形學(xué)報(bào);2012年07期
6 莊凌;莊越挺;吳江琴;葉振超;吳飛;;一種基于稀疏典型性相關(guān)分析的圖像檢索方法[J];軟件學(xué)報(bào);2012年05期
7 張剛;馬宗民;;一種采用Gabor小波的紋理特征提取方法[J];中國(guó)圖象圖形學(xué)報(bào);2010年02期
8 劉麗;匡綱要;;圖像紋理特征提取方法綜述[J];中國(guó)圖象圖形學(xué)報(bào);2009年04期
9 張菁;沈蘭蓀;David Dagan Feng;;基于視覺(jué)感知的圖像檢索的研究[J];電子學(xué)報(bào);2008年03期
相關(guān)博士學(xué)位論文 前3條
1 陳沅濤;圖像視覺(jué)顯著性和改進(jìn)型SVM在圖像分割中的研究[D];南京理工大學(xué);2014年
2 吳金建;基于人類視覺(jué)系統(tǒng)的圖像信息感知和圖像質(zhì)量評(píng)價(jià)[D];西安電子科技大學(xué);2014年
3 張巧榮;視覺(jué)注意計(jì)算模型及其關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 譚珊;基于顏色對(duì)比和各向異性擴(kuò)散分割的顯著性區(qū)域檢測(cè)[D];大連理工大學(xué);2013年
,本文編號(hào):2345951
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2345951.html