基于壓縮域多特征融合的圖像分割算法研究
[Abstract]:Since the 21 century, with the rapid development of science and technology, people have to deal with a large number of information data (such as images, videos and documents) every day for further analysis and research. As one of the commonly used information carriers, image plays an important role in the process of receiving, transmitting and processing information. The so-called image segmentation refers to the segmentation of different regions with the same color, brightness, texture and other "special meanings" in the image, and makes these regions disjoint, at the same time, each region should satisfy the consistency condition of a particular region [1]. The existing image segmentation techniques have some limitations in actual use, such as high complexity, poor robustness, too much manual intervention, inaccurate segmentation targets in complex background, and so on. Image segmentation is one of the difficult problems in machine vision technology. With the rapid development of digital image acquisition equipment, the resolution of digital image is becoming higher and higher, and the size of image is becoming larger and larger. Therefore, a fast and efficient image segmentation method is particularly important. The main content of this paper is the image segmentation method based on graph theory and spectral clustering, using the improved discrete cosine transform (Discrete Cosine Transform,DCT) to preprocess the image to obtain the square structure block (DCT-SBS) based on DCT. Using the resulting DCT-SBS to construct the map nodes, then extracting the color information, texture information and location information of each node, and using a new multi-feature fusion method to calculate the edge weights. Finally, the image segmentation method based on DCT-SBS proposed in this paper is used to realize image segmentation. The specific work of this paper is as follows: 1. This paper introduces the basic method of image segmentation based on graph theory, aiming at the problem that the computational complexity increases greatly with the increase of nodes when traditional segmentation methods use image pixels to construct graph nodes. In this paper, the complexity of constructing graph nodes by using DCT-SBS is not only reduced. At the same time, the node retains the structural information of the original image data. 2. In this paper, a new method based on multi-feature information fusion in compressed domain is proposed to calculate the edge weight of the graph. The color information, texture information and position information are effectively used to calculate the edge weight of the graph. Based on the traditional spectral clustering algorithm, a general spectral clustering algorithm framework and its solution process are proposed, and the framework can be changed to different image segmentation algorithms by adjusting the parameters. 4. The proposed algorithm is compared with eight different image segmentation algorithms. In order to verify the validity of the proposed method and the comprehensive performance of the spectral clustering algorithm framework, the proposed segmentation algorithm is validated on Corel1000 data sets and MSRA10K datasets in this paper. The image segmentation method proposed in this paper has the characteristics of high segmentation accuracy and high algorithm efficiency. In reality, it has certain theoretical significance and application value.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 劉暢;;自動指紋識別技術(shù)的發(fā)展與應(yīng)用[J];人力資源管理;2016年11期
2 張敏;李愛蘭;;車輛牌照識別系統(tǒng)的設(shè)計與仿真[J];電子測試;2016年05期
3 楊超;楊振;胡維平;;車牌識別系統(tǒng)中反色判斷及二值化算法[J];計算機工程與設(shè)計;2016年02期
4 雍萬鈴;楊樹文;張立峰;楊猛;黃艷艷;;面向?qū)ο蟮男l(wèi)星影像積雪信息提取[J];測繪科學(xué);2016年09期
5 畢雪芹;蘇艷娟;王琪;;嵌入式指紋識別系統(tǒng)的設(shè)計及試驗研究[J];國外電子測量技術(shù);2015年02期
6 熊俊濤;鄒湘軍;彭紅星;陳文光;林桂潮;;擾動柑橘采摘的實時識別與采摘點確定技術(shù)[J];農(nóng)業(yè)機械學(xué)報;2014年08期
7 嚴蔚敏;李冬梅;吳偉民;;數(shù)據(jù)結(jié)構(gòu)(C語言版)[J];計算機教育;2012年12期
8 胡敏;蔡慧芬;;基于形態(tài)學(xué)標(biāo)記連通的分水嶺圖像分割[J];電子測量與儀器學(xué)報;2011年10期
9 封岸松;戰(zhàn)仕成;汪瀅;;基于FPGA的RGB到Y(jié)CrCb顏色空間轉(zhuǎn)換[J];現(xiàn)代電子技術(shù);2010年10期
10 尚麗;陳杰;張愉;;人臉自動識別技術(shù)綜述[J];蘇州市職業(yè)大學(xué)學(xué)報;2010年01期
相關(guān)博士學(xué)位論文 前3條
1 梁浩;圖的拉普拉斯矩陣和臨界群[D];中國科學(xué)技術(shù)大學(xué);2009年
2 陳忠;高分辨率遙感圖像分類技術(shù)研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2006年
3 黃國祥;RGB顏色空間及其應(yīng)用研究[D];中南大學(xué);2002年
相關(guān)碩士學(xué)位論文 前6條
1 陳靜逸;半監(jiān)督特征提取算法及其在人臉識別應(yīng)用中的研究[D];安徽理工大學(xué);2016年
2 孫研;基于智能優(yōu)化算法的多閾值圖像分割技術(shù)及其并行加速[D];南京理工大學(xué);2014年
3 趙鵬;實時圖像處理系統(tǒng)的硬件設(shè)計與實現(xiàn)[D];北京工業(yè)大學(xué);2013年
4 徐正洲;基于計算機視覺的目標(biāo)跟蹤預(yù)測研究[D];廣西師范大學(xué);2012年
5 雒娟花;基于圖像處理的障礙物檢測系統(tǒng)研究[D];西安科技大學(xué);2009年
6 董瑞;基于圖譜理論的圖像匹配和圖像分割算法研究[D];安徽大學(xué);2007年
,本文編號:2345623
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2345623.html