圖像預(yù)處理設(shè)計與實現(xiàn)
發(fā)布時間:2018-11-16 20:49
【摘要】:數(shù)字圖像處理也被稱為計算機圖像處理,在居民生活、工業(yè)生產(chǎn)、航空航天等領(lǐng)域中占有著重大作用,數(shù)字圖像預(yù)處理是對采集到的圖像先進行一系列的處理,以便可以去除圖像在傳輸、數(shù)字化過程中產(chǎn)生的一些噪聲,并且可以減少圖像的無關(guān)信息,以便可以更好的對圖像進行分析和理解。本文首先介紹了圖像預(yù)處理平臺的硬件搭建,講述了平臺處理器、存儲器、電源、復(fù)位等硬件組成。研究了可以提取圖像特征,簡化圖像數(shù)據(jù)量的角點檢測算法,并對幾種角點檢測算法進行了分析研究,針對Harris角點檢測算法的不足提出了自適應(yīng)性的Harris角點檢測算法,使用Matlab驗證了方案的正確性,改進后的角點檢測算法可以更為有效的提取圖像的角點信息。其次研究了DCT壓縮算法,并針對算法不足之處,提出了自適應(yīng)性算法,使用Matlab驗證了方案的正確性,改進后的算法,可以有效提高算法性能。最后研究了在FPGA上可以應(yīng)用的一系列的濾波算法,比如圖像中值濾波、最小值濾波、最大值濾波、形態(tài)學(xué)濾波、高斯濾波、Sobel邊緣檢測濾波,這些濾波方式均可以在FPGA上得以有效實現(xiàn)。
[Abstract]:Digital image processing, also known as computer image processing, plays an important role in the fields of resident life, industrial production, aerospace and so on. In order to remove some noise generated in the process of image transmission and digitization, and to reduce the irrelevant information of the image, so that the image can be better analyzed and understood. This paper first introduces the hardware construction of image preprocessing platform, and describes the hardware composition of platform processor, memory, power supply, reset and so on. The corner detection algorithm which can extract image features and simplify image data is studied. Several corner detection algorithms are analyzed and studied. An adaptive Harris corner detection algorithm is proposed to overcome the shortcomings of Harris corner detection algorithm. The correctness of the scheme is verified by Matlab, and the improved corner detection algorithm can extract corner information more effectively. Secondly, the DCT compression algorithm is studied, and an adaptive algorithm is proposed to overcome the shortcomings of the algorithm. The correctness of the scheme is verified by using Matlab. The improved algorithm can effectively improve the performance of the algorithm. Finally, we study a series of filtering algorithms that can be used in FPGA, such as median image filtering, minimum filtering, maximum filtering, morphological filtering, Gao Si filtering, Sobel edge detection filtering. These filtering methods can be effectively implemented on FPGA.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
本文編號:2336608
[Abstract]:Digital image processing, also known as computer image processing, plays an important role in the fields of resident life, industrial production, aerospace and so on. In order to remove some noise generated in the process of image transmission and digitization, and to reduce the irrelevant information of the image, so that the image can be better analyzed and understood. This paper first introduces the hardware construction of image preprocessing platform, and describes the hardware composition of platform processor, memory, power supply, reset and so on. The corner detection algorithm which can extract image features and simplify image data is studied. Several corner detection algorithms are analyzed and studied. An adaptive Harris corner detection algorithm is proposed to overcome the shortcomings of Harris corner detection algorithm. The correctness of the scheme is verified by Matlab, and the improved corner detection algorithm can extract corner information more effectively. Secondly, the DCT compression algorithm is studied, and an adaptive algorithm is proposed to overcome the shortcomings of the algorithm. The correctness of the scheme is verified by using Matlab. The improved algorithm can effectively improve the performance of the algorithm. Finally, we study a series of filtering algorithms that can be used in FPGA, such as median image filtering, minimum filtering, maximum filtering, morphological filtering, Gao Si filtering, Sobel edge detection filtering. These filtering methods can be effectively implemented on FPGA.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 徐光憲;徐山強;郭曉娟;華一陽;;DCT變換與DNA運算相結(jié)合的圖像壓縮加密算法[J];激光技術(shù);2015年06期
2 王昆;;一種基于變換域的圖像壓縮改進算法[J];微型電腦應(yīng)用;2015年11期
3 趙慧;;基于Harris算子的灰度圖像角點檢測方法研究[J];產(chǎn)業(yè)與科技論壇;2015年20期
4 鄒志遠;安博文;曹芳;潘勝達;;一種自適應(yīng)紅外圖像角點檢測算法[J];激光與紅外;2015年10期
5 周光宇;劉慧忠;;邊緣檢測算法的FPGA實現(xiàn)[J];計算機系統(tǒng)應(yīng)用;2015年10期
6 高飛;王正光;;基于Harris角點檢測的數(shù)字圖像反取證技術(shù)研究[J];電子技術(shù)與軟件工程;2015年15期
7 孫玲;逯柳;張旭;;水圖像預(yù)處理技術(shù)研究[J];電子世界;2015年13期
8 蘇婷;金龍旭;李國寧;陶宏江;張珂;韓雙麗;;基于改進Harris算法的圖像角點檢測[J];半導(dǎo)體光電;2015年03期
9 于洋;蘭旭騰;;基于FPGA的圖像處理系統(tǒng)算法研究[J];電子技術(shù)與軟件工程;2015年10期
10 王紅君;施楠;趙輝;岳有軍;;改進中值濾波方法的圖像預(yù)處理技術(shù)[J];計算機系統(tǒng)應(yīng)用;2015年05期
,本文編號:2336608
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2336608.html
最近更新
教材專著