衛(wèi)星遮擋交通環(huán)境下車輛融合定位策略研究
[Abstract]:The combination of Global Positioning System (GPS) and inertial navigation system (INS) based on Micro-Electro-Mechanical System (MEMS) technology provides a low-cost solution for the accurate and reliable positioning of land vehicles. However, the positioning accuracy of the MEMSINS/ GPS combined system is rapidly reduced during the GPS interruption. In order to solve this problem, this paper has carried out the research of the vehicle fusion positioning strategy in the environment of the satellite-shielded traffic environment, the two key technologies of the random error processing of the MEMS inertial measurement unit (IMU) and the MEMSINS/ GPS information fusion algorithm, and the deep exploration of some of the key problems. The main research contents and achievements include: (1) In order to suppress the high-frequency part of the random error of the MEMS IMU, a data preprocessing algorithm based on improved wavelet filter (IWF) is designed. In the light of the limitation of the determination of the number of decomposition levels and the existence of the threshold function in the traditional wavelet filtering, the optimal number of layers of the wavelet decomposition is selected by the method of spectral analysis and experimental evaluation, and a modified threshold function with an adjustment factor is designed. The experimental results show that the method overcomes the shortcomings of the traditional threshold function to a certain extent, and can better restrain the high-frequency part of the random error of the MEMS inertial data. (2) Based on the advantages of empirical mode decomposition (EMD) and fractal Gaussian noise (fGn), an adaptive data preprocessing algorithm based on EMD interval threshold filtering is designed. The method firstly uses fGn to model the random error in the inertial data, then uses fGn to determine the relationship between the variance of the intrinsic mode function (IMF) of each layer, and determines the EMD filtering threshold selection criterion; and meanwhile, a threshold processing scheme based on the IMF interval is constructed, to eliminate the discontinuity of the filtered signal. The experimental results show that the pre-processing algorithm can effectively eliminate the random errors of some low-frequency and random errors, but also can eliminate the high-frequency part of the random error. Compared with the pre-processing algorithm based on the modified small-wave filtering, the accuracy of the post-filter inertial data data is further improved. (3) A hybrid strategy based on the self-regressive (AR) model-assisted Kalman filter (KF) is proposed to improve the accuracy and reliability of the vehicle-combined positioning system in the case of the satellite blocking traffic. The method comprises the following steps of: firstly, introducing an inertia data preprocessing step in a system structure to provide high-precision inertial data for subsequent information fusion; then, improving the traditional INS error modeling structure, and designing a sequence-based INS error modeling and prediction structure; and on the basis, An AR model-based forward estimator (ARFE) is designed and a mixed strategy based on ARFE/ KF is designed to model and predict the position error of the INS. The results of real-vehicle experiment show that the method can effectively compensate the position error of the INS in the case of GPS interruption, and has better generalization ability and real-time performance, and greatly improves the positioning accuracy of the vehicle under the condition of GPS shielding. (4) In order to further improve the performance of the vehicle-combined positioning system under the condition of longer GPS interruption, an INS-error mixed prediction strategy based on an external input non-linear auto-regressive model (NARX)-assisted KF based on the Least Squares Support Vector Machine (LSSVM) is proposed. In this paper, an INS error modeling structure with memory function and internal feedback is designed, and the development trend of INS error and the influence of vehicle motion state are taken into account; the INS error is modeled by the LSSVM-NARX/ KF mixing strategy, and the prediction and compensation of the INS error is realized during the GPS interruption. The real-vehicle experiment shows that the method has better adaptability to various driving conditions, can effectively inhibit the accumulation of the INS positioning error, and can provide more accurate and reliable positioning information for the vehicle under the condition that the GPS is interrupted for a long time.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U463.67;U495
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅超;吳軒;;基于GPS/DR的智能橋梁檢測車定位系統(tǒng)的研究[J];牡丹江大學(xué)學(xué)報(bào);2012年09期
2 高社生;桑春萌;李偉;;改進(jìn)的粒子濾波在列車組合定位系統(tǒng)中的應(yīng)用[J];中國慣性技術(shù)學(xué)報(bào);2009年06期
3 李慧麗;黃偉;趙恒;;船載多傳感器組合定位系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];艦船電子工程;2011年10期
4 聶澤東;方康玲;徐新;;基于SOPC技術(shù)的便攜式定位系統(tǒng)設(shè)計(jì)[J];微計(jì)算機(jī)信息;2007年05期
5 任亞飛;柯熙政;李樹州;;基于小波熵的組合定位系統(tǒng)數(shù)據(jù)融合(英文)[J];儀器儀表學(xué)報(bào);2006年S2期
6 楊榮榮;張玲;;UKF在車輛組合定位技術(shù)中的應(yīng)用[J];科學(xué)技術(shù)與工程;2010年25期
7 張fE;蔣浩宇;范耀祖;;車載GPS與雙DR組合定位系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];微計(jì)算機(jī)信息;2006年25期
8 趙京,閔雪峰;組合定位系統(tǒng)中時(shí)間Petri網(wǎng)的應(yīng)用方法研究[J];交通運(yùn)輸系統(tǒng)工程與信息;2002年04期
9 劉興川;吳振鋒;林孝康;;基于自適應(yīng)加權(quán)算法的WLAN/MARG/GPS組合定位系統(tǒng)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年07期
10 夏繼江;何鐵;林志堅(jiān);;組合定位系統(tǒng)中航位推算性能測試評(píng)估方法的探討[J];全球定位系統(tǒng);2006年02期
相關(guān)博士學(xué)位論文 前1條
1 陳偉;衛(wèi)星遮擋交通環(huán)境下車輛融合定位策略研究[D];東南大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 黃一成;水面區(qū)域定位技術(shù)研究[D];蘇州大學(xué);2015年
2 張福隆;基于二取二的列車組合定位系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];北京交通大學(xué);2012年
3 陸德彪;列車組合定位系統(tǒng)可信性研究[D];北京交通大學(xué);2010年
4 史慶峰;車載組合定位系統(tǒng)的研究[D];吉林大學(xué);2005年
5 李宇;GPS/DR組合定位系統(tǒng)中濾波算法的研究[D];蘭州理工大學(xué);2008年
6 蘇健;基于Vxworks列車組合定位系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2011年
7 王曉偉;基于GPS/INS組合定位系統(tǒng)的濾波算法的研究與仿真[D];西南交通大學(xué);2013年
8 王沛;基于多頻RFID組合定位系統(tǒng)設(shè)計(jì)與應(yīng)用[D];西安電子科技大學(xué);2014年
9 張麗平;基于GPS/DR組合定位系統(tǒng)的數(shù)據(jù)融合方法研究[D];沈陽理工大學(xué);2014年
10 潘勇;車載GPS/DR組合定位系統(tǒng)的數(shù)據(jù)融合研究[D];首都師范大學(xué);2009年
,本文編號(hào):2336059
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2336059.html