飛行態(tài)勢感知中目標分群方法研究
[Abstract]:As the focus and difficulty of situational awareness, target clustering is an important basis to determine the relationship between target entities and the basis of the later data fusion system. In this paper, the algorithm of target clustering is studied, and the improvement and realization of the algorithm are given. The main work of this paper is as follows: firstly, on the basis of in-depth analysis of the relationship among data fusion, situation assessment and situational awareness according to hierarchical structure, this paper points out the key and difficult problems of target clustering in situational awareness. The existing target clustering methods are studied, and the hierarchical clustering algorithm, which is one of the target clustering algorithms, is analyzed. Secondly, the characteristics and functions of classical hierarchical clustering algorithm are analyzed. The advantages and disadvantages of Rock algorithm, Cure algorithm and Chameleon algorithm in similarity calculation are analyzed. The Chameleon algorithm, which has obvious advantages in similarity calculation, is analyzed. The basic concept, mathematical model and implementation flow are studied in detail. The limitations of Chameleon algorithm are found through theoretical analysis and simulation experiments. Finally, starting with the limitation of the Chameleon algorithm, according to the two-stage flow of the algorithm, the DPC algorithm based on the peak density is introduced into the first stage of the Chameleon algorithm, and the discipline of community structure is introduced into the second stage of the Chameleon algorithm, and the two stages of the algorithm are improved. An improved Chameleon algorithm is proposed to solve the problem of target clustering. For the improved Chameleon algorithm, the algorithm model and algorithm flow are introduced in detail, and the specific simulation experiments are given. Experimental results show that the improved Chameleon algorithm is less sensitive to input parameters than the traditional Chameleon algorithm and can deal with multi-shape data sets.
【學(xué)位授予單位】:中國民航大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:E926.4;TP301.6
【參考文獻】
相關(guān)期刊論文 前10條
1 宋建輝;張俊;劉硯菊;于洋;;基于LBP-PCA的多傳感器目標識別算法[J];火力與指揮控制;2017年02期
2 WANG Shuliang;WANG Dakui;LI Caoyuan;LI Yan;DING Gangyi;;Clustering by Fast Search and Find of Density Peaks with Data Field[J];Chinese Journal of Electronics;2016年03期
3 宋翌曦;;人因工程在航空地面保障安全方面的應(yīng)用[J];現(xiàn)代工業(yè)經(jīng)濟和信息化;2016年04期
4 魏小鳳;胡繼承;羅永恩;;基于超圖模型的軟件模塊自動劃分[J];計算機工程;2016年01期
5 朱燁行;李艷玲;楊獻文;;一種改進CHAMELEON算法的聚類算法COCK[J];微電子學(xué)與計算機;2015年12期
6 陳晉音;何輝豪;;基于密度的聚類中心自動確定的混合屬性數(shù)據(jù)聚類算法研究[J];自動化學(xué)報;2015年10期
7 薛文娟;劉培玉;劉棟;;引入共享近鄰加權(quán)圖的Chameleon算法[J];計算機應(yīng)用;2012年10期
8 毛小燕;;網(wǎng)絡(luò)結(jié)點度相關(guān)性測度及其穩(wěn)定性分析[J];計算機應(yīng)用與軟件;2012年04期
9 席榮榮;云曉春;金舒原;張永錚;;網(wǎng)絡(luò)安全態(tài)勢感知研究綜述[J];計算機應(yīng)用;2012年01期
10 孫曉博;廖桂平;;基于新的相似性度量的加權(quán)粗糙聚類算法[J];計算機工程與科學(xué);2011年12期
相關(guān)博士學(xué)位論文 前3條
1 李峗;基于復(fù)雜網(wǎng)絡(luò)社區(qū)探測的作戰(zhàn)體系目標分群方法研究[D];國防科學(xué)技術(shù)大學(xué);2013年
2 杜楠;復(fù)雜網(wǎng)絡(luò)中社區(qū)結(jié)構(gòu)發(fā)現(xiàn)算法研究及建模[D];北京郵電大學(xué);2009年
3 李偉生;信息融合系統(tǒng)中態(tài)勢估計技術(shù)研究[D];西安電子科技大學(xué);2004年
相關(guān)碩士學(xué)位論文 前6條
1 吳栻玲;結(jié)合AP算法的Chameleon聚類算法研究[D];東北師范大學(xué);2014年
2 董高峰;基于One-class SVM的多球體文本聚類算法研究[D];重慶大學(xué);2013年
3 陳華;機載多傳感器數(shù)據(jù)融合態(tài)勢評估關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2012年
4 張娜;復(fù)雜網(wǎng)絡(luò)社區(qū)結(jié)構(gòu)劃分算法研究[D];大連理工大學(xué);2009年
5 瞿俊;基于重疊度的層次聚類算法研究及其應(yīng)用[D];廈門大學(xué);2007年
6 程岳;數(shù)據(jù)融合中態(tài)勢估計技術(shù)研究[D];西安電子科技大學(xué);2002年
,本文編號:2335259
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2335259.html