基于灰色關(guān)聯(lián)分析的灰度圖像邊緣檢測(cè)研究
[Abstract]:Based on the theory that the gray correlation analysis can detect the edge, this paper studies the principle of the traditional edge detection algorithm based on the grey correlation analysis, and improves the shortcomings of the traditional algorithm, such as poor anti-noise performance and strong subjectivity of threshold setting. This paper first introduces the background knowledge of edge detection, the theoretical basis and research progress of traditional edge detection based on grey correlation analysis. Secondly, the defects of the traditional algorithm are improved. The median filter is added to the detection image for smoothing filtering to enhance the anti-noise performance of the algorithm. In this paper, an adaptive differential equation for calculating threshold is proposed based on human visual characteristics. The equation is composed of the average gray value of 3 脳 3 neighborhood around the pixels to be detected in the image, which overcomes the subjective disadvantage of the traditional threshold setting algorithm. The improved algorithm is simulated and analyzed. By dealing with the eight neighborhood region points of the edge points, the phenomenon of more pseudo-edge of the edge extracted by the improved threshold is improved. The experimental results show that the improved algorithm can suppress the salt and pepper noise with high concentration, and the edge extracted by the adaptive threshold is less than the traditional algorithm. Finally, the improved algorithm is compared with the classical differential operator in the aspects of anti-noise performance, location error, linear connection degree, edge continuity and so on. The experimental data show that the edge image detected by the improved algorithm is more complete, the edge is continuous, the edge is finer, and the localization accuracy is higher than the classical algorithm, for the image with high concentration of salt and pepper noise, The advantages of the classical algorithm are also obtained. The applicability of the improved algorithm to different types of images and the performance of the algorithm time in different gray-scale images are discussed. The results show that the proposed algorithm has strong applicability.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黨耀國(guó);王俊杰;康文芳;;灰色預(yù)測(cè)技術(shù)研究進(jìn)展綜述[J];上海電機(jī)學(xué)院學(xué)報(bào);2015年01期
2 文永革;何紅洲;李海洋;;一種改進(jìn)的Roberts和灰色關(guān)聯(lián)分析的邊緣檢測(cè)算法[J];圖學(xué)學(xué)報(bào);2014年04期
3 周志剛;桑農(nóng);萬立;陳鐵靈;;利用灰色理論構(gòu)造統(tǒng)計(jì)量進(jìn)行圖像邊緣檢測(cè)[J];系統(tǒng)工程與電子技術(shù);2013年05期
4 王樹文;張長(zhǎng)利;;基于圖像處理技術(shù)的黃瓜葉片病害識(shí)別診斷系統(tǒng)研究[J];東北農(nóng)業(yè)大學(xué)學(xué)報(bào);2012年05期
5 薛文格;周萬府;;基于Prewitt算子和鄧氏關(guān)聯(lián)度的圖像邊緣檢測(cè)算法[J];楚雄師范學(xué)院學(xué)報(bào);2011年09期
6 桂預(yù)風(fēng);吳建平;;基于Laplacian算子和灰色關(guān)聯(lián)度的圖像邊緣檢測(cè)方法[J];汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期
7 魯勝?gòu)?qiáng);劉瑞玲;;灰色關(guān)聯(lián)度和Prewitt算子相結(jié)合的邊緣檢測(cè)算法[J];福建電腦;2011年04期
8 齊英劍;李青;吳正朋;;基于灰色相對(duì)關(guān)聯(lián)度的圖像邊緣檢測(cè)算法[J];中國(guó)傳媒大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
9 康牧;王寶樹;;自適應(yīng)Kirsch邊緣檢測(cè)算法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
10 鐘都都;閆杰;;基于灰色關(guān)聯(lián)分析和Canny算子的圖像邊緣提取算法[J];計(jì)算機(jī)工程與應(yīng)用;2006年28期
相關(guān)博士學(xué)位論文 前1條
1 磨少清;邊緣檢測(cè)及其評(píng)價(jià)方法的研究[D];天津大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 李雪;灰度圖像邊緣檢測(cè)算法的性能評(píng)價(jià)[D];沈陽(yáng)工業(yè)大學(xué);2007年
,本文編號(hào):2335124
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2335124.html