飛行員疲勞度評(píng)估模型及應(yīng)用研究
[Abstract]:Controlling the fatigue state of the pilots is an important subject of flight safety. The current research on the fatigue status of pilots is more focused on summing up, suggesting or biological models, and does not achieve real modeling and quantification. Using information management system and machine learning algorithm to control the fatigue state of pilots is the core of this paper. Based on the theoretical knowledge of software engineering, this paper analyzes the requirements of flight fatigue monitoring and control by airlines, and makes the overall design of the system for demand analysis, which is summarized as information management and fatigue value management. The four sub-modules of flight recommendation management and post-flight rest period management have been summarized and summarized by referring to the company's relevant operating specifications and consulting flight experts in the detailed design stage. The fatigue values of pilots caused by different subjective and objective factors are determined. On this basis, a variety of fatigue factors are introduced into the linear regression model to model the fatigue value model, and the pilot-flight fatigue value matrix is constructed, and the PMF model is used to model the flight recommendation. Combined with the basic post-flight rest period stipulated by CAAC, the fatigue value of the pilot is quantified to the post-flight rest period, and the optimization model of post-flight rest period is constructed. Finally, the three models are integrated into the pilot fatigue monitoring and management system to form a unified management, in order to analyze and monitor the pilot's fatigue state and control the fatigue value in order to ensure the flight safety. This paper makes use of the flight data collected by the flight personnel and the real flight operation conditions, and through the way of expert evaluation, the model is trained and demonstrated, and finally integrated into the application of the whole system. Using the popular Spring MVC framework and python algorithm library, a flight fatigue monitoring system based on the B / S framework is developed, and the feasibility and availability of the system are verified.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:V328;TP311.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 鐘宏杰,門云閣,徐克平;以模型為素質(zhì)平臺(tái),打破知識(shí)教育的格式化[J];天津工業(yè)大學(xué)學(xué)報(bào);2002年03期
相關(guān)會(huì)議論文 前1條
1 潘志勇;李紅燕;;一種MVC架構(gòu)中的數(shù)據(jù)組織方法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
相關(guān)博士學(xué)位論文 前6條
1 單黎君;圖形化模型的一致性檢查[D];國防科學(xué)技術(shù)大學(xué);2008年
2 李響爍;PLM開發(fā)實(shí)施進(jìn)程與集成產(chǎn)品元模型研究[D];浙江大學(xué);2007年
3 江濤;特定領(lǐng)域元建模語言的形式化及其模型一致性驗(yàn)證研究[D];云南大學(xué);2010年
4 薛斌黨;嵌入式隱Markov模型和神經(jīng)網(wǎng)絡(luò)人臉識(shí)別[D];大連理工大學(xué);2002年
5 張楚賢;基于元模型的工程系統(tǒng)仿真建模方法及應(yīng)用研究[D];華中科技大學(xué);2011年
6 秦飛巍;基于語義的異構(gòu)三維CAD模型檢索[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 柴葉生;基于MARTE模型的系統(tǒng)性能評(píng)估[D];蘇州大學(xué);2015年
2 李小青;中學(xué)物理課程中光的本質(zhì)模型的學(xué)習(xí)進(jìn)階研究[D];長江大學(xué);2016年
3 杜彩蘭;基于COX模型的某跨國企業(yè)人員流失預(yù)測模型研究[D];大連理工大學(xué);2016年
4 夏劉洋;基于多尺度內(nèi)聚顆粒模型的振動(dòng)擠壓破碎過程研究[D];江西理工大學(xué);2016年
5 田彬;基于語義元模型的作物模型開發(fā)方法與設(shè)計(jì)工具研究[D];南京農(nóng)業(yè)大學(xué);2015年
6 李鑫;飛行員疲勞度評(píng)估模型及應(yīng)用研究[D];大連理工大學(xué);2016年
7 張媛;基于有線電視寬帶網(wǎng)的電子商務(wù)模型中心平臺(tái)模型層的研究與實(shí)現(xiàn)[D];昆明理工大學(xué);2004年
8 田剛;基于元模型的PIM到PSM轉(zhuǎn)換技術(shù)研究[D];山東科技大學(xué);2007年
9 宋亮亮;基于模型的軟件工具鏈的設(shè)計(jì)與實(shí)現(xiàn)[D];汕頭大學(xué);2009年
10 李明宇;UML模型一致性檢測的研究[D];山東大學(xué);2005年
,本文編號(hào):2328401
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2328401.html