天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于最大熵模糊聚類(lèi)的快速多目標(biāo)跟蹤算法研究

發(fā)布時(shí)間:2018-11-11 11:44
【摘要】:為了提高雜波環(huán)境中多目標(biāo)跟蹤的實(shí)時(shí)性和精確性,利用最大熵?cái)?shù)據(jù)模糊聚類(lèi)方法得到的模糊隸屬度表示目標(biāo)與量測(cè)之間的關(guān)聯(lián)概率,同時(shí)分析了公共量測(cè)對(duì)目標(biāo)的影響,引入影響因子重建互聯(lián)概率矩陣,結(jié)合概率數(shù)據(jù)關(guān)聯(lián)算法實(shí)現(xiàn)多目標(biāo)的狀態(tài)估計(jì)。該算法避免了對(duì)確認(rèn)矩陣的拆分,解決了聯(lián)合概率數(shù)據(jù)關(guān)聯(lián)算法隨著目標(biāo)和回波數(shù)目增加而導(dǎo)致的計(jì)算量爆炸性增長(zhǎng)問(wèn)題。針對(duì)不同雜波密度環(huán)境下的臨近平行目標(biāo)和小角度交叉目標(biāo)的跟蹤進(jìn)行了仿真分析,仿真結(jié)果表明:最大熵模糊聚類(lèi)聯(lián)合概率數(shù)據(jù)關(guān)聯(lián)算法是一種有效的快速數(shù)據(jù)關(guān)聯(lián)算法,在密集雜波環(huán)境中跟蹤性能依然優(yōu)于聯(lián)合概率數(shù)據(jù)關(guān)聯(lián)算法和經(jīng)驗(yàn)聯(lián)合概率數(shù)據(jù)關(guān)聯(lián)算法,在一定程度上可以避免航跡融合。
[Abstract]:In order to improve the real-time and accuracy of multi-target tracking in clutter environment, the fuzzy membership degree obtained by maximum entropy data fuzzy clustering method is used to express the correlation probability between target and measurement, and the influence of common measurement on target is analyzed. The influence factors are introduced to reconstruct the interconnected probability matrix and the probabilistic data association algorithm is used to realize the multi-objective state estimation. The algorithm avoids the splitting of the confirmation matrix and solves the problem of explosive increase of computation caused by the increase of the number of targets and echoes in the joint probabilistic data association algorithm. The tracking of adjacent parallel targets and small angle cross targets under different clutter density is simulated. The simulation results show that the maximum entropy fuzzy clustering combined probability data association algorithm is an effective and fast data association algorithm. The tracking performance in dense clutter environment is still better than that of joint probabilistic data association algorithm and empirical joint probabilistic data association algorithm, which can avoid track fusion to some extent.
【作者單位】: 西北工業(yè)大學(xué)航海學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(51179157、51409214、11574250)贊助
【分類(lèi)號(hào)】:TP311.13

【相似文獻(xiàn)】

相關(guān)期刊論文 前7條

1 朱曉鋼;楊兵;許華杰;;支持無(wú)線傳感器網(wǎng)絡(luò)多目標(biāo)跟蹤的聚類(lèi)數(shù)據(jù)關(guān)聯(lián)算法研究[J];計(jì)算機(jī)科學(xué);2012年S1期

2 葉西寧;顧幸生;潘泉;;數(shù)據(jù)關(guān)聯(lián)算法性能評(píng)估的一種方法[J];火力與指揮控制;2006年05期

3 李輝;左現(xiàn)剛;張安;段航宇;;復(fù)雜環(huán)境下數(shù)據(jù)關(guān)聯(lián)算法的研究現(xiàn)狀及發(fā)展趨勢(shì)[J];火力與指揮控制;2007年09期

4 徐洋;徐暉;羅少華;安瑋;;基于隨機(jī)有限集理論的多傳感器目標(biāo)聯(lián)合檢測(cè)跟蹤算法[J];國(guó)防科技大學(xué)學(xué)報(bào);2013年01期

5 ;電腦文摘[J];電腦開(kāi)發(fā)與應(yīng)用;1995年04期

6 李景熹;王樹(shù)宗;王航宇;;密集雜波環(huán)境下的數(shù)據(jù)關(guān)聯(lián)算法研究[J];系統(tǒng)仿真學(xué)報(bào);2009年05期

7 黃偉平;徐毓;王杰;;應(yīng)用回歸分析的數(shù)據(jù)關(guān)聯(lián)算法[J];西安交通大學(xué)學(xué)報(bào);2011年08期

,

本文編號(hào):2324746

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2324746.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)2f8a7***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com