天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于膜系統(tǒng)的多關(guān)系聚類算法的研究與應(yīng)用

發(fā)布時(shí)間:2018-10-12 10:56
【摘要】:膜系統(tǒng)是自然計(jì)算領(lǐng)域中的一個(gè)年輕的分支,受器官、組織、細(xì)胞及其他生物構(gòu)造中化學(xué)元素處理方法的啟發(fā)而從中抽象出的分布式并行計(jì)算模型。由于具有并行性強(qiáng)、容錯(cuò)性強(qiáng)和分布式等特性,膜系統(tǒng)在眾多領(lǐng)域得到了普遍的應(yīng)用,并且已經(jīng)解決了眾多的現(xiàn)實(shí)問題。傳統(tǒng)的聚類方法通常假設(shè)數(shù)據(jù)之間是相互獨(dú)立的,然而,現(xiàn)在大部分的應(yīng)用數(shù)據(jù)存儲(chǔ)在關(guān)系數(shù)據(jù)庫(kù)以多關(guān)系的形式。傳統(tǒng)的聚類方法已不再能滿足現(xiàn)在應(yīng)用數(shù)據(jù)的要求,本文針對(duì)多關(guān)系聚類存在聚類質(zhì)量差和聚類效率低的問題,展開了深入的研究。本文以膜系統(tǒng)為基礎(chǔ)模型,首先提出了一種初始中心選取的方法對(duì)K-means聚類算法進(jìn)行優(yōu)化改進(jìn),然后在此基礎(chǔ)上提出了兩種高效的多關(guān)系聚類算法,并將提出的算法應(yīng)用于協(xié)同過濾推薦系統(tǒng):(1)基于初始聚類中心優(yōu)化的K-means算法(OIK-means算法)。該算法首先根據(jù)相似性計(jì)算每個(gè)對(duì)象的密度,然后通過計(jì)算對(duì)象與任意高密度對(duì)象的最小距離來篩選候選中心,接著通過平均密度來排除離群點(diǎn),最后確定K初始中心點(diǎn)。OIK-means算法在人工數(shù)據(jù)集和UCI數(shù)據(jù)集上進(jìn)行測(cè)驗(yàn),并與傳統(tǒng)的K-means算法在初始中心選取的準(zhǔn)確性上進(jìn)行了對(duì)比。(2)基于綜合相似性的多關(guān)系聚類算法(ISMC)。算法使用元組ID傳播的思想,為關(guān)系數(shù)據(jù)庫(kù)中的每個(gè)表設(shè)置一個(gè)權(quán)重,對(duì)傳統(tǒng)的相似性計(jì)算進(jìn)行改進(jìn),按照一定的權(quán)重把對(duì)象的類內(nèi)相似性和類外相似性整合成綜合相似性,基于綜合相似性對(duì)目標(biāo)表中的對(duì)象進(jìn)行OIK-means聚類。ISMC算法在UCI數(shù)據(jù)集Movie上進(jìn)行了測(cè)驗(yàn),并與TPC、ReCOM、LinkClus算法進(jìn)行了比較。(3)基于膜系統(tǒng)的遺傳K-means多關(guān)系聚類算法(GKM)。算法從膜系統(tǒng)與多關(guān)系聚類算法相結(jié)合的新角度出發(fā),設(shè)計(jì)了由三個(gè)細(xì)胞組成的進(jìn)化-交流組織型P系統(tǒng),并在三個(gè)細(xì)胞中使用了三種不同的遺傳進(jìn)化機(jī)制,這種混合遺傳機(jī)制能夠改善算法的收斂性和增強(qiáng)對(duì)象的多樣性,使多關(guān)系數(shù)據(jù)集能有一個(gè)準(zhǔn)確的聚類。GKM算法在UCI數(shù)據(jù)集Movie上進(jìn)行了測(cè)驗(yàn),并與ReCOM、LinkClus、ISMC算法進(jìn)行了比較。(4)將基于膜系統(tǒng)的多關(guān)系聚類應(yīng)用于協(xié)同過濾推薦系統(tǒng)中,提出了一個(gè)基于膜系統(tǒng)和多關(guān)系聚類的高效的協(xié)同過濾推薦方法(MCMCF)。該方法充分利用了膜系統(tǒng)的極大并行(Max)和分布式執(zhí)行的特點(diǎn),綜合相似性計(jì)算方法使得數(shù)據(jù)稀疏性問題得到有效解決,多關(guān)系聚類也有效的縮減了近鄰的搜索規(guī)模,提高了算法的推薦質(zhì)量和運(yùn)行效率。
[Abstract]:Membrane system is a young branch in the field of natural computing. It is an abstract distributed parallel computing model inspired by the processing methods of chemical elements in organs, tissues, cells and other biological structures. Because of its strong parallelism, fault tolerance and distributed characteristics, membrane systems have been widely used in many fields, and many practical problems have been solved. Traditional clustering methods usually assume that the data are independent of each other. However, most of the application data are stored in the relational database in the form of multiple relationships. The traditional clustering method can no longer meet the requirements of the current application data. This paper focuses on the problems of poor clustering quality and low clustering efficiency in multi-relational clustering. In this paper, based on the membrane system model, an initial center selection method is proposed to optimize and improve the K-means clustering algorithm, and then two efficient multi-relational clustering algorithms are proposed. The proposed algorithm is applied to collaborative filtering recommendation system: (1) K-means algorithm based on initial clustering center optimization (OIK-means algorithm). The algorithm first calculates the density of each object according to the similarity, then selects the candidate center by calculating the minimum distance between the object and any high-density object, and then excludes outliers by the average density. Finally, the initial center point of K is determined. OIK-means algorithm is tested on artificial data set and UCI data set, and compared with the traditional K-means algorithm in the accuracy of initial center selection. (2) the multi-relation clustering algorithm (ISMC). Based on synthetic similarity is proposed. Using the idea of tuple ID propagation, the algorithm sets a weight for each table in relational database, improves the traditional similarity calculation, and integrates the intra-class similarity and out-of-class similarity of objects into comprehensive similarity according to certain weights. Based on the synthetic similarity, the objects in the target table are clustered by OIK-means. The ISMC algorithm is tested on the UCI dataset Movie, and compared with the TPC,ReCOM,LinkClus algorithm. (3) the genetic K-means multi-relation clustering algorithm (GKM). Based on the membrane system is proposed. From the view of the combination of membrane system and multi-relation clustering algorithm, an evolution-alternating tissue P system composed of three cells was designed, and three different genetic evolutionary mechanisms were used in the three cells. This hybrid genetic mechanism can improve the convergence of the algorithm and enhance the diversity of objects, so that there can be an accurate clustering of multi-relational datasets. The GKM algorithm is tested on the UCI dataset Movie. And compared with ReCOM,LinkClus,ISMC algorithm. (4) Multi-relational clustering based on membrane system is applied to collaborative filtering recommendation system, and an efficient collaborative filtering recommendation method (MCMCF). Based on membrane system and multi-relational clustering is proposed. This method makes full use of the characteristics of the maximal parallel (Max) and distributed execution of the membrane system. The synthetic similarity calculation method can effectively solve the problem of data sparsity, and the multi-relation clustering can effectively reduce the search scale of the nearest neighbor. The recommended quality and efficiency of the algorithm are improved.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 鄧左祥;李春貴;;一種有效的多關(guān)系聚類算法[J];微電子學(xué)與計(jì)算機(jī);2016年04期

相關(guān)博士學(xué)位論文 前2條

1 薛潔;兩類生物計(jì)算問題及其在數(shù)據(jù)挖掘中的應(yīng)用研究[D];山東師范大學(xué);2015年

2 高瀅;多關(guān)系聚類分析方法研究[D];吉林大學(xué);2008年

相關(guān)碩士學(xué)位論文 前2條

1 黃小麗;基于PSO的膜聚類算法及其在圖像壓縮中的應(yīng)用[D];西華大學(xué);2015年

2 蔣洋;基于膜計(jì)算的聚類算法研究[D];西華大學(xué);2014年

,

本文編號(hào):2265858

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2265858.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶04997***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com