基于MapReduce的人臉識別的研究
[Abstract]:With the era of big data and the arrival of intelligence, how to efficiently extract valuable information from face image data has become a hot spot in the field of face recognition. With the rapid development of cloud computing, distributed batch processing has brought new ideas to face recognition. The traditional face recognition technology only focuses on single face recognition in a small range and static state. Generally, the real-time performance is very low when the amount of data increases, so it can not be used in places with large amount of data. This paper explores the applicability and real-time of face recognition, and proposes a new idea of combining the existing face recognition algorithm with the batch computing framework (MapReduce) in big data's processing architecture. The main contributions of this paper are as follows: (1) aiming at the problem of small application range of traditional face recognition, this paper proposes to use HDFS and HBase in big data storage technology to store data. All the built-in images and face images to be recognized are stored in the HBase, and the unique text files representing the built-in picture information are stored in the HDFS. So that face recognition can be applied to a larger range of places. 2) aiming at the problem of low real-time performance of traditional face recognition, the idea of combining face recognition algorithm with batch processing MapReduce in Hadoop is proposed. Firstly, the Euclidean distance is calculated by using Map to calculate the Euclidean distance for face recognition PCA algorithm, and the intermediate results are obtained. Then the intermediate result is processed by Reduce, and the built-in picture information corresponding to the minimum Euclidean distance is finally stored as the final result. In order to test the performance of the improved face recognition system in this paper, the real-time and applicable range of the improved face recognition model is evaluated by using a number of different sets of built-in face image data, and a good test result is obtained.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 趙士偉;張如彩;王月明;張暉;;生物特征識別技術(shù)綜述[J];中國安防;2015年07期
2 阮夢黎;;大數(shù)據(jù)挑戰(zhàn)下的NoSQL系統(tǒng)研究[J];聊城大學(xué)學(xué)報(自然科學(xué)版);2015年01期
3 李青云;余文;;關(guān)系型數(shù)據(jù)庫到H Base的轉(zhuǎn)換設(shè)計[J];信息網(wǎng)絡(luò)安全;2015年01期
4 李偉;;Hadoop平臺下的分形圖像壓縮編碼[J];測控技術(shù);2014年04期
5 盧世軍;;生物特征識別技術(shù)發(fā)展與應(yīng)用綜述[J];計算機安全;2013年01期
6 張會森;王映輝;;人臉識別技術(shù)[J];計算機工程與設(shè)計;2006年11期
7 張曉華,山世光,曹波,高文,周德龍,趙德斌;CAS-PEAL大規(guī)模中國人臉圖像數(shù)據(jù)庫及其基本評測介紹[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2005年01期
8 張新宇,張三元,葉修梓;基于圖像化幾何的三維模型彩繪[J];軟件學(xué)報;2004年03期
9 張翠平,蘇光大;人臉識別技術(shù)綜述[J];中國圖象圖形學(xué)報;2000年11期
相關(guān)碩士學(xué)位論文 前1條
1 張臻;基于Hadoop的并行優(yōu)化方法及其在人臉識別中應(yīng)用研究[D];電子科技大學(xué);2015年
,本文編號:2260329
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2260329.html