基于優(yōu)化蟻群算法的鋼軌輪廓識(shí)別
[Abstract]:Aiming at the problems of the traditional ant colony algorithm in rail image recognition, the ant colony algorithm is optimized in four aspects. Initialization process optimization: using nonlinear iterative equation of one-dimensional Logistic chaotic mapping sequence to make the initialization distribution of ant colony more uniform to avoid a large number of independent operations; search process optimization: at the initial stage of ant colony search using random search strategy, According to the grayscale gradient value of the image, the threshold value is set up automatically, the pixel points of rail edge in the image are preliminarily determined, and then the region search model is established to accurately search and depict the rail edge; the search step is optimized: at the initial stage of the search, The large step random search strategy is used to identify the pixel points on the rail edge, and the small step size region search strategy is used to identify the rail edge pixels more accurately, so as to realize the accurate recognition of rail contour. The search time and convergence time of the algorithm are reduced, and the pheromone updating strategy is optimized: every time a search is completed, the pheromone is updated according to the maximum and minimum concentration of the pheromone set automatically, so as to prevent from falling into local optimum. Canny edge detection operator, traditional algorithm and optimization algorithm are used to compare rail contour recognition with the actual collected rail images on straight line and curve line. The results show that the optimization algorithm has better robustness and recognition efficiency.
【作者單位】: 蘭州交通大學(xué)自動(dòng)化與電氣工程學(xué)院;蘭州交通大學(xué)光電技術(shù)與智能控制教育部重點(diǎn)實(shí)驗(yàn)室;蘭州交通大學(xué)電子與信息工程學(xué)院;
【基金】:中國(guó)鐵路總公司科技研究開(kāi)發(fā)計(jì)劃項(xiàng)目(2016X003-H) 甘肅省青年科技基金資助項(xiàng)目(1308RJYA096)
【分類號(hào)】:TP18;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪向前,朱桂林,何志均;一個(gè)基于產(chǎn)生式系統(tǒng)的花稿輪廓識(shí)別方法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);1999年04期
2 吳維勇,王英惠,周晏;平面輪廓識(shí)別與分段技術(shù)的研究與快速實(shí)現(xiàn)[J];工程圖學(xué)學(xué)報(bào);2003年04期
3 肖明堯;;人體輪廓識(shí)別在石油監(jiān)控系統(tǒng)中的研究[J];應(yīng)用能源技術(shù);2009年11期
4 時(shí)曉明,林亨,趙作智;采用輪廓識(shí)別法實(shí)現(xiàn)零件曲面重構(gòu)[J];機(jī)械科學(xué)與技術(shù);2001年02期
5 范彥斌,沈自林;二維機(jī)械裝配圖輪廓識(shí)別與消隱裁剪算法[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年06期
6 張棟,劉允才;高分辨率航拍灰度圖像中的房屋主輪廓識(shí)別[J];上海交通大學(xué)學(xué)報(bào);2003年11期
7 景林;林耀海;溫永仙;黃世國(guó);林宜寬;;結(jié)合色彩特征和空域特征的成捆原木輪廓識(shí)別[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2013年07期
8 郭玉英;朱正為;;基于小波變換的數(shù)字視頻多分辨率編/解碼及圖像輪廓識(shí)別[J];兵工自動(dòng)化;2005年05期
9 曾濤;;Dualis輪廓識(shí)別傳感器的原理及應(yīng)用[J];自動(dòng)化博覽;2011年10期
10 ;[J];;年期
相關(guān)會(huì)議論文 前2條
1 劉艷磊;苑立波;;物體陡峭邊緣的多方位傅里葉輪廓識(shí)別方法[A];光電技術(shù)與系統(tǒng)文選——中國(guó)光學(xué)學(xué)會(huì)光電技術(shù)專業(yè)委員會(huì)成立二十周年暨第十一屆全國(guó)光電技術(shù)與系統(tǒng)學(xué)術(shù)會(huì)議論文集[C];2005年
2 賀石漢;魏東波;郭立業(yè);;基于NMI特征的ICT斷層輪廓識(shí)別與處理[A];全國(guó)射線數(shù)字成像與CT新技術(shù)研討會(huì)論文集[C];2012年
相關(guān)博士學(xué)位論文 前1條
1 查長(zhǎng)軍;分布式壓縮感知及輪廓識(shí)別研究[D];安徽大學(xué);2013年
相關(guān)碩士學(xué)位論文 前3條
1 沈智慧;基于輪廓識(shí)別的機(jī)器人可變視角障礙物檢測(cè)方法研究[D];浙江工業(yè)大學(xué);2014年
2 丁路;基于深度圖像的人體輪廓識(shí)別技術(shù)[D];東南大學(xué);2015年
3 黃冰;繡花CAD中若干技術(shù)的研究[D];浙江大學(xué);2007年
,本文編號(hào):2257349
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2257349.html