基于尺度間上下文關系模型的動態(tài)紋理分割
[Abstract]:Dynamic texture is composed of a series of image sequences which are repeated in space and change with time, and have some self-similarity in space-time domain. Dynamic texture analysis has a potential application prospect in many fields. As one of the key issues in dynamic texture research, dynamic texture segmentation has attracted more and more attention, which makes the research of dynamic texture become a hot issue. Dynamic texture segmentation is to segment natural texture image sequences into several regions that are not overlapped with each other, and different regions have different textures, and the texture in the same region shows uniform consistency. The contextual relationship between scales can make full use of the relationships between different scales to characterize the "motion" and "appearance" of dynamic textures. Therefore, this paper proposes a dynamic texture segmentation method based on the context relation model between scales. The main work of this paper is as follows: 1. A dynamic texture segmentation algorithm based on context relation of Markov chain in wavelet domain is proposed. After the dynamic texture is transformed by wavelet transform, there are strong dependencies between subbands and adjacent sub-bands in the same frame image scale, which can be used to improve the performance of dynamic texture characterization. The mark-up field model of this algorithm adopts the inter-scale causal Markov random field model and the non-causal Markov random field model in the scale, and the Gao Si Markov random field model is used to model the characteristic field. The interaction relationship between each wavelet coefficient vector and adjacent wavelet coefficient vector on the same scale is considered by neighborhood interaction parameter matrix. Experimental results show that the algorithm can achieve dynamic texture segmentation. 2. 2. A dynamic texture segmentation algorithm based on the context relation of Markov random field energy is proposed. Based on the space-time neighborhood system and the multi-scale random field model, the neighborhood system and energy function of the label field are determined. The dynamic texture segmentation method of Markov random field based on multi-scale random field model is formed by using Gao Si distribution to describe the observation field, and the dynamic texture is segmented by maximum a posteriori criterion. Finally, the simulation results are compared with those of the existing model algorithms, and better segmentation results are obtained.
【學位授予單位】:哈爾濱工程大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前9條
1 趙泉華;高郡;李玉;;基于區(qū)域劃分的多特征紋理圖像分割[J];儀器儀表學報;2015年11期
2 李亞楠;趙耀;林春雨;白慧慧;劉美琴;;基于圖像分割的金字塔Lucas-Kanade光流法提取深度信息[J];鐵道學報;2015年01期
3 朱玉蓮;陳松燦;;特征采樣和特征融合的子圖像人臉識別方法[J];軟件學報;2012年12期
4 楊葉梅;;基于改進光流法的運動目標檢測[J];計算機與數(shù)字工程;2011年09期
5 李杰;熊琨;楊東曉;;基于邊緣光流法向分量的運動區(qū)域劃分[J];北京理工大學學報;2011年04期
6 劉峰;龔健雅;;一種結合能量最小和馬爾可夫隨機場的圖像分割方法[J];地理與地理信息科學;2011年02期
7 劉國英;茅力非;王雷光;秦前清;;基于小波域分層Markov模型的紋理分割[J];武漢大學學報(信息科學版);2009年05期
8 劉少華;張茂軍;智利丁;;基于像素塊最大后驗概率的視頻對象分割方法[J];中國圖象圖形學報;2009年01期
9 趙銀娣;張良培;李平湘;;廣義馬爾可夫隨機場及其在多光譜紋理影像分類中的應用[J];遙感學報;2006年01期
相關博士學位論文 前1條
1 張印輝;多尺度馬爾可夫隨機場圖像分割方法研究[D];昆明理工大學;2010年
相關碩士學位論文 前10條
1 林江;基于邊緣檢測和馬爾可夫隨機場的AD癥腦MRI分割方法研究[D];西南交通大學;2015年
2 劉曉磊;基于MRF隨機場模型的機器人視覺圖像分割方法研究[D];西安建筑科技大學;2015年
3 劉純;基于區(qū)域的馬爾可夫隨機場在高分辨率遙感影像分類中的應用研究[D];云南師范大學;2015年
4 王建;基于圖像的智能交通系統(tǒng)中車標識別技術研究[D];南京理工大學;2014年
5 李元博;基于運動邊界模型的光流估計方法研究[D];西安電子科技大學;2013年
6 徐曉明;基于MRF和非采樣小波變換的動態(tài)紋理分割[D];哈爾濱工程大學;2013年
7 楊陽;基于光流空間分布的步態(tài)識別研究[D];天津大學;2012年
8 趙敏;基于最小二乘估計人臉素描效果算法研究[D];電子科技大學;2012年
9 王來慧;基于多分辨率隱馬爾可夫隨機場的動態(tài)紋理分割[D];哈爾濱工程大學;2012年
10 向川平;基于光流場的視頻運動檢測研究[D];西華大學;2011年
,本文編號:2245976
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2245976.html