自然場(chǎng)景下字符區(qū)域的定位與識(shí)別
[Abstract]:With the development of various smart mobile devices such as mobile phones, people pay more and more attention to the acquisition and utilization of text information in natural scenes such as life and industrial environment. Text information in natural scenes is different from printed text, it has a variety of languages, different fonts and sizes, complex background interference, damage and the impact of defacement, All these bring some difficulties and challenges to the acquisition and utilization of text information in natural scenes. This thesis is devoted to the research of the exact location and recognition of the following regions of the natural scene, focusing on the localization and recognition of the English character and digital regions; On this basis, a special scene of text location and recognition of natural scene, regional location and recognition of railway tanker number in complex industrial environment is further studied. As a part of the following area of natural scene, the railway tanker car number area is characterized by the rupture of its characters. In this paper, the location and recognition of the railway tanker number in complex industrial environment is studied as a special scene of the location and recognition of the local area in the following natural scene. In order to locate the area of railway tanker number accurately from many disturbances in complex industrial environment, and to separate and recognize the broken characters. On the basis of comparing and summarizing all kinds of text region localization methods, this paper presents a new location method which is suitable for English alphabet and digital region, which is widely used in natural scene. It is also applicable to the regional location of railway tanker number in complex industrial environment. This method has better localization effect for text regions with different sizes and tilting, which are affected by illumination changes. Firstly, the maximum stable extremum region (Maximally Stable Extremal Regions,MSER) is used to detect and obtain the extremum region, and the obtained extreme value region is screened. Then the triplet region is connected to the candidate text region by the effective region pair, and then the candidate text region is selected by using support vector machine (Support Vector Machine,SVM). In order to verify the generality of this method, this paper studies the acquisition of railway tanker number information in complex industrial environment, which is a special application scene in natural scene. In this paper, according to the character of railway tanker car number character break, a separation method suitable for breaking character is given. The recognition of characters takes into account the variety of characters and the variety of fonts in natural scenes, while the type of characters of railway tanker car number is fixed and the font changes are relatively little, so different methods are adopted to recognize the characters in these two major application scenarios. Tesseract-OCR is used to train and recognize the common English letters and numbers in natural scenes, and SVM is used to classify and recognize the vehicle number characters. A large number of experiments have proved that the method adopted in this paper has a good effect on the location and recognition of text information in the two research scenarios.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖意;姜軍;;基于最大穩(wěn)定極值區(qū)域的車牌定位與字符分割[J];計(jì)算機(jī)與數(shù)字工程;2015年12期
2 王斌;;基于MSER和PHOG特征的交通標(biāo)志檢測(cè)方法[J];智慧工廠;2015年10期
3 劉新瀚;錢侃;王宇飛;朱向霄;孫知信;;自然場(chǎng)景下基于連通域檢測(cè)的文字識(shí)別算法研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年05期
4 王雁;穆春陽(yáng);馬行;;基于顏色標(biāo)準(zhǔn)化模型和HOG特征的交通標(biāo)志檢測(cè)[J];軟件導(dǎo)刊;2015年03期
5 張偉偉;湯光明;孫怡峰;蘇偉;;一種針對(duì)漢字特點(diǎn)的場(chǎng)景圖像中文文本定位算法[J];信息工程大學(xué)學(xué)報(bào);2014年06期
6 余旺盛;田孝華;侯志強(qiáng);;基于區(qū)域邊緣統(tǒng)計(jì)的圖像特征描述新方法[J];計(jì)算機(jī)學(xué)報(bào);2014年06期
7 郭蘭圖;余芳;陳金鳳;;一種局部與全局特征結(jié)合的圖像檢索算法[J];微型機(jī)與應(yīng)用;2013年18期
8 劉曉佩;盧朝陽(yáng);李靜;;基于蟻群算法和LBP-HF的場(chǎng)景文本定位[J];光電工程;2012年03期
9 劉靜;;幾種車牌字符識(shí)別算法的比較[J];電腦與電信;2008年08期
10 楊凌霄;武建平;;機(jī)器學(xué)習(xí)方法在人臉檢測(cè)中的應(yīng)用[J];計(jì)算機(jī)與數(shù)字工程;2008年03期
相關(guān)博士學(xué)位論文 前3條
1 吳銳;自然場(chǎng)景中文本識(shí)別技術(shù)研究及實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2010年
2 李學(xué)勇;金屬標(biāo)牌壓印凹凸字符的特征提取和識(shí)別方法研究[D];山東大學(xué);2008年
3 黃劍華;自然場(chǎng)景中文本信息提取方法[D];哈爾濱工業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 劉亞亞;圖像中文本區(qū)域定位的研究[D];江南大學(xué);2015年
2 袁俊淼;基于幾何約束的筆劃寬度變換(SWT)算法及其字幕文本定位應(yīng)用[D];電子科技大學(xué);2015年
3 萬(wàn)松;基于Tesseract-OCR的名片識(shí)別系統(tǒng)的研究與實(shí)現(xiàn)[D];華南理工大學(xué);2014年
4 胡倩;自然場(chǎng)景下的文本定位[D];淮北師范大學(xué);2014年
5 張宏丹;汽車牌照自動(dòng)識(shí)別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
6 孫海俠;超商貨架商品分割與識(shí)別方法研究[D];南京理工大學(xué);2014年
7 劉萌萌;基于神經(jīng)網(wǎng)絡(luò)的壓印字符識(shí)別系統(tǒng)研究[D];天津大學(xué);2013年
8 張龍;蟻群算法在鐵譜圖像處理中的應(yīng)用研究[D];南京航空航天大學(xué);2013年
9 劉大方;基于CPN的視頻人工文本提取方法研究[D];哈爾濱工程大學(xué);2013年
10 李佳新;復(fù)雜背景下的視頻文本定位與分割[D];西安科技大學(xué);2012年
,本文編號(hào):2245488
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2245488.html