基于粒子濾波的紅外多目標(biāo)跟蹤算法研究
[Abstract]:In recent years, with the rapid development of information technology, especially the rapid development of computing technology and infrared imaging technology, infrared multi-target detection and tracking technology plays a more important role in both military and civilian applications. Especially when tracking multiple targets, the problems of occlusion and real-time tracking become hot and difficult, and many problems need to be solved or improved. In recent years, particle filter algorithm, as one of the most important filtering methods for nonlinear filtering, has made great progress. Firstly, the principle of classical particle filter algorithm and the application of classical particle filter algorithm in infrared multi-target tracking are analyzed, and the related problems of multi-target tracking are modeled. Then, the advantages and disadvantages of the structure are analyzed and discussed in the framework of Bayesian tracking theory. Secondly, some simple theories of mean shift algorithm are described, and then an infrared target tracking method which combines mean shift algorithm with particle filter tracking algorithm is proposed. This method keeps the calculation complexity of mean shift algorithm small, and has the characteristic of good real-time performance. The mean shift algorithm is used to converge the particles in the particle filter, which makes each particle have more real target characteristics, greatly reduces the number of particles needed to describe the target state, and improves the sampling efficiency of the particle. The real-time performance of the algorithm is improved. Several experiments show that the fusion algorithm has robust tracking performance and saves computational time to meet the real-time requirements of target tracking. Finally, the improved particle filter multi-target detection algorithm is studied. This paper introduces a common infrared multi-target detection algorithm, based on the analysis of its own merits and demerits, proposes an infrared multi-target detection algorithm based on weight optimal selection, and improves the method of resampling. The higher weight particle goes into the next step of tracking and the smaller weight particle is abandoned, which improves the accuracy and persistence of the tracking. Then, the Markov (Markov) random field is introduced into the weighted optimal particle filter algorithm, and the undirected graph model is used to deal with the data association problem in the multi-target tracking, so that the algorithm can track the occluded multi-target. The effectiveness of tracking is improved when the target is partially occluded. The improved particle filter algorithm studied in this paper has a great improvement in the real-time and anti-occlusion aspects of tracking, and has a certain theoretical significance and application value to the multi-target tracking technology.
【學(xué)位授予單位】:沈陽(yáng)理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張鳳軍;趙嶺;安國(guó)成;王宏安;戴國(guó)忠;;一種尺度自適應(yīng)的Mean Shift跟蹤算法[J];計(jì)算機(jī)研究與發(fā)展;2014年01期
2 李茂林;劉小平;胡凌燕;徐少平;;基于部分背景加權(quán)更新的均值漂移跟蹤算法[J];計(jì)算機(jī)應(yīng)用研究;2013年12期
3 李琦;邵春福;岳昊;;核窗口尺寸和目標(biāo)模型自適應(yīng)的均值漂移跟蹤[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
4 唐耀飛;李杰;;基于模板相關(guān)匹配的紅外目標(biāo)跟蹤FPGA算法實(shí)現(xiàn)[J];紅外技術(shù);2012年03期
5 劉晴;唐林波;趙保軍;;跟蹤窗自適應(yīng)的Mean Shift目標(biāo)跟蹤算法[J];系統(tǒng)工程與電子技術(shù);2012年02期
6 劉興淼;王仕成;趙靜;劉志國(guó);;基于特征融合與背景加權(quán)的紅外目標(biāo)跟蹤[J];系統(tǒng)工程與電子技術(shù);2011年10期
7 宿燕鳴;齊敏;李大健;嚴(yán)欣;;圖像相關(guān)匹配算法研究與紅外目標(biāo)跟蹤應(yīng)用[J];計(jì)算機(jī)仿真;2011年09期
8 高國(guó)旺;劉上乾;秦翰林;;強(qiáng)背景噪聲下紅外目標(biāo)的魯棒性跟蹤算法[J];西安電子科技大學(xué)學(xué)報(bào);2010年06期
9 王爽;夏玉;焦李成;;基于均值漂移的自適應(yīng)紋理圖像分割方法[J];軟件學(xué)報(bào);2010年06期
10 薛陳;朱明;劉春香;;遮擋情況下目標(biāo)跟蹤算法綜述[J];中國(guó)光學(xué)與應(yīng)用光學(xué);2009年05期
相關(guān)博士學(xué)位論文 前7條
1 穆治亞;紅外多目標(biāo)實(shí)時(shí)跟蹤方法的研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2014年
2 孫繼剛;序列圖像紅外小目標(biāo)檢測(cè)與跟蹤算法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2014年
3 龔俊亮;紅外弱小多目標(biāo)實(shí)時(shí)檢測(cè)跟蹤技術(shù)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2013年
4 戴淵明;視頻序列圖像中目標(biāo)跟蹤技術(shù)研究[D];浙江大學(xué);2012年
5 王鑫;復(fù)雜背景下紅外目標(biāo)檢測(cè)與跟蹤算法研究[D];南京理工大學(xué);2010年
6 劉瑞明;復(fù)雜環(huán)境下紅外目標(biāo)檢測(cè)及跟蹤技術(shù)研究[D];上海交通大學(xué);2008年
7 凌建國(guó);紅外目標(biāo)穩(wěn)健跟蹤和識(shí)別研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 李孟儒;基于MeanShift的紅外目標(biāo)跟蹤算法研究[D];沈陽(yáng)理工大學(xué);2015年
2 張少娜;基于均值漂移的目標(biāo)跟蹤算法研究[D];南京郵電大學(xué);2013年
3 丁業(yè)兵;基于Mean Shift的視頻目標(biāo)跟蹤算法研究[D];安徽大學(xué);2012年
4 張海洋;基于粒子濾波的紅外目標(biāo)跟蹤的研究[D];湖南大學(xué);2012年
5 王國(guó)勇;基于均值漂移算法的運(yùn)動(dòng)人體跟蹤研究[D];浙江工業(yè)大學(xué);2012年
6 吳大;遠(yuǎn)距離前視紅外多目標(biāo)跟蹤方法研究[D];電子科技大學(xué);2012年
7 張榆紅;基于運(yùn)動(dòng)信息的粒子濾波算法[D];西安電子科技大學(xué);2012年
8 李瑋;基于視頻圖像序列的目標(biāo)跟蹤方法研究[D];山東大學(xué);2011年
9 姬雪峰;基于粒子濾波的紅外目標(biāo)跟蹤方法研究[D];西安電子科技大學(xué);2011年
10 郭輝;基于非線性濾波的目標(biāo)跟蹤算法研究[D];西安電子科技大學(xué);2010年
,本文編號(hào):2243767
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2243767.html