基于深度學(xué)習(xí)的大規(guī)模圖數(shù)據(jù)挖掘
[Abstract]:With the extensive research and application of big data's thinking and deep learning, the graph structure is gradually used to represent the large-scale and complicated data in the real world. And deep mining the hidden information inside the large scale map data has gradually become the hot spot of research. In the era of information explosion, the traditional search engine based on keyword matching has been difficult to meet the needs of users who want to obtain information quickly, accurately and easily. Therefore, the knowledge map can meet the new query needs by building semantic information entity graph. Firstly, by reviewing the research contents of knowledge atlas by scholars, scientific research institutions and companies, this paper gives a comprehensive introduction to the development and construction methods of knowledge atlas, including the origin, development and final forming process of the concept of knowledge atlas; The methods involved in constructing knowledge map include ontology and entity extraction, graph construction, updating, maintenance, and knowledge map oriented internal structure mining and external extension application. Finally, the future development direction and challenges of knowledge map are prospected. Aiming at the problem of complex computation and sparse data in large-scale graph data mining, a network representation learning algorithm based on deep learning is proposed in this paper, which is improved on the basis of word2vec algorithm. By representing graph nodes as low-dimensional vectors, it is possible to use mature machine learning algorithms and linear algebra theories and tools in graph data mining. According to the multi-label classification task of graph nodes, the algorithm uses partial label information to guide the process of walking between nodes, and then uses the logical regression classification model to classify the feature representation of nodes. The experimental results show that the accuracy of label classification is significantly improved by guided walking. In addition, using the vector representation of graph nodes obtained by network representation learning algorithm, a combination method of generating edge feature representation is designed. At the same time, the link prediction of complex networks is realized by constructing a classification model of depth confidence networks.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.13;TP181
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉知遠(yuǎn);孫茂松;林衍凱;謝若冰;;知識表示學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)研究與發(fā)展;2016年02期
2 方濱興;賈焰;李愛平;殷麗華;;網(wǎng)絡(luò)空間大搜索研究范疇與發(fā)展趨勢[J];通信學(xué)報(bào);2015年12期
3 曹倩;趙一鳴;;知識圖譜的技術(shù)實(shí)現(xiàn)流程及相關(guān)應(yīng)用[J];情報(bào)理論與實(shí)踐;2015年12期
4 莊嚴(yán);李國良;馮建華;;知識庫實(shí)體對齊技術(shù)綜述[J];計(jì)算機(jī)研究與發(fā)展;2016年01期
5 陳維政;張巖;李曉明;;網(wǎng)絡(luò)表示學(xué)習(xí)[J];大數(shù)據(jù);2015年03期
6 王元卓;賈巖濤;劉大偉;靳小龍;程學(xué)旗;;基于開放網(wǎng)絡(luò)知識的信息檢索與數(shù)據(jù)挖掘[J];計(jì)算機(jī)研究與發(fā)展;2015年02期
7 王知津;王璇;馬婧;;論知識組織的十大原則[J];國家圖書館學(xué)刊;2012年04期
8 楊思洛;韓瑞珍;;知識圖譜研究現(xiàn)狀及趨勢的可視化分析[J];情報(bào)資料工作;2012年04期
9 呂琳媛;;復(fù)雜網(wǎng)絡(luò)鏈路預(yù)測[J];電子科技大學(xué)學(xué)報(bào);2010年05期
10 祝忠明;馬建霞;盧利農(nóng);李富強(qiáng);劉巍;吳登祿;;機(jī)構(gòu)知識庫開源軟件DSpace的擴(kuò)展開發(fā)與應(yīng)用[J];現(xiàn)代圖書情報(bào)技術(shù);2009年Z1期
相關(guān)碩士學(xué)位論文 前5條
1 袁旭萍;基于深度學(xué)習(xí)的商業(yè)領(lǐng)域知識圖譜構(gòu)建[D];華東師范大學(xué);2015年
2 項(xiàng)靈輝;基于圖數(shù)據(jù)庫的海量RDF數(shù)據(jù)分布式存儲[D];武漢科技大學(xué);2013年
3 曹浩;基于機(jī)器學(xué)習(xí)的雙語詞匯抽取問題研究[D];南開大學(xué);2011年
4 關(guān)鍵;面向中文文本本體學(xué)習(xí)概念抽取的研究[D];吉林大學(xué);2010年
5 曾錦麒;語義WEB的知識表示語言及其應(yīng)用研究[D];中南大學(xué);2004年
,本文編號:2235752
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2235752.html