基于稀疏表示的圖像去噪算法
[Abstract]:The basic problem of image processing is image denoising. With the rise and popularization of compressed sensing, more and more scholars begin to pay attention to sparse representation theory and its application. Image denoising based on sparse representation has become a frontier research topic in this field in recent years. On this basis, an exploratory study of image denoising method based on sparse representation of over-complete dictionary is carried out.
In sparse representation theory, there are two ways to construct a dictionary: one is to select a fixed base group to form an analytic dictionary; the other is to learn an adaptive dictionary based on training samples. This paper chooses all-phase biorthogonal transform (APBT) proposed by our research group to construct the atom library, and combines several basis functions into a hybrid atom library.
Redundant dictionaries based on learning methods can extract the structural features of signals more accurately, which is also a research hotspot in recent years. On the basis of studying the image denoising algorithm based on KSVD dictionary learning, this paper proposes an improved dictionary learning algorithm by combining the correlation coefficient matching criterion with the dictionary clipping method. In order to utilize the non-local self-similarity information of images, a new image denoising algorithm based on improved dictionary learning and non-local self-similarity is proposed, which incorporates self-similarity as a constraint regular term into the image denoising model. It can retain more details such as texture, edge and so on.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 蔡澤民;賴劍煌;;一種基于超完備字典學(xué)習(xí)的圖像去噪方法[J];電子學(xué)報;2009年02期
2 王剛;王娟;王德華;張志峰;肖亮;賀安之;;基于Contourlet變換域統(tǒng)計模型的路面圖像去噪算法[J];光電子.激光;2009年10期
3 周季夫;鐘誠文;尹世群;解建飛;張勇;;基于GPGPU的Lattice-Boltzmann數(shù)值模擬算法[J];計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報;2008年07期
4 劉琚,何振亞;利用SVD對帶噪聲的模糊圖像進(jìn)行盲復(fù)原[J];數(shù)據(jù)采集與處理;2002年01期
5 侯正信;離散余弦列率濾波器的設(shè)計及應(yīng)用[J];天津大學(xué)學(xué)報;1999年03期
6 尹忠科,王建英,邵君;基于原子庫結(jié)構(gòu)特性的信號稀疏分解[J];西南交通大學(xué)學(xué)報;2005年02期
7 程文波;王華軍;;信號稀疏表示的研究及應(yīng)用[J];西南石油大學(xué)學(xué)報(自然科學(xué)版);2008年05期
相關(guān)博士學(xué)位論文 前2條
1 孫玉寶;圖像稀疏表示模型及其在圖像處理反問題中的應(yīng)用[D];南京理工大學(xué);2010年
2 王成優(yōu);全相位雙正交變換理論及其在圖像編碼中的應(yīng)用研究[D];天津大學(xué);2010年
本文編號:2230833
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2230833.html