基于監(jiān)督學習的多樣化推薦算法研究
[Abstract]:With the advent of the era of big data and mobile internet, people communicate more frequently, the relationship is closer, the era of lack of information is gone, the era of information overload comes one after another. In the Internet age, traditional search algorithms can not provide personalized search lists for users, and the needs of users and the market can not be fully met. Therefore, recommendation system as a personalized search tool came into being to help users make choices about shopping. Information such as material or product content helps users to screen, filter, and select the product that consumers are most likely to be interested in as a return result. This method on the one hand shortens the running time of the system, on the other hand greatly improves the efficiency of users to obtain information. Optical projection improves the accuracy of the recommendation system. However, recommendation algorithms that simply consider the accuracy often recommend more popular items to users, making the recommendation list monotonous, narrowing the user's vision, and unable to get valuable recommendation information. On the one hand, with the help of recommendation systems, users can broaden their horizons and discover products of value to themselves; on the other hand, businesses can use recommendation systems to increase sales of cold-door products and enhance their use. Most of the existing algorithms use specific diversity evaluation indicators and use heuristic strategies to reorder the items to get a new recommendation list. Firstly, a user-preferred item set is selected according to the traditional precision-based algorithm, and then the user-preferred item set is selected by maximizing the selection. However, these algorithms divide the accuracy and diversity of the recommendation system into two separate parts, and optimize the accuracy and diversity of the two objective functions respectively, resulting in the problem solving efficiency is reduced, which can not well define and solve the supervised learning problem. The main contributions of this paper are as follows: (1) Based on the supervised learning method, this paper explores an algorithm to improve the diversity of recommendation systems under the premise of ensuring accuracy. (2) In order to solve the coupling problem mentioned above, this paper proposes a diversified collaborative filtering algorithm, in which the structured support vector machine learns to get a recommendation model to generate a recommendation list for each user. (3) A new set-based measure for the accuracy and diversity of evaluation recommendation systems is proposed: pairwise accuracy and normalized topic coverage diversity, and the new evaluation index and ranking-based method are validated respectively. Finally, a large number of repeated experiments are carried out on different data sets to verify the effectiveness of the proposed algorithm in different evaluation indicators and to detect the significance of the results.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3
【相似文獻】
相關期刊論文 前10條
1 董玉林;龐麗萍;夏重杭;;監(jiān)督學習問題中的最優(yōu)性條件與數(shù)值試驗[J];高等學校計算數(shù)學學報;2005年S1期
2 陳志民;楊敬鋒;陳其昌;張嘉琪;陳強;;融合監(jiān)督學習與凝聚層次聚類的土地評價方法[J];計算機工程與應用;2007年18期
3 張鋼;印鑒;程良倫;鐘欽靈;;半監(jiān)督多示例核[J];計算機科學;2011年09期
4 費越,汪力新,戴汝為;競爭監(jiān)督學習法在集成型識別系統(tǒng)中的應用[J];自動化學報;1999年03期
5 袁優(yōu);張鋼;;一種基于標簽傳播的半監(jiān)督核學習算法[J];電腦與電信;2013年11期
6 汪力新;費越;戴汝為;;基于人機結合的競爭監(jiān)督學習[J];模式識別與人工智能;1997年03期
7 蔣艷凰;周海芳;楊學軍;;監(jiān)督學習的發(fā)展動態(tài)[J];計算機科學;2003年07期
8 壽皓;;序列數(shù)據(jù)的監(jiān)督學習方法綜述[J];機電工程技術;2012年08期
9 黃德雙;自監(jiān)督學習子空間模式識別方法的統(tǒng)計特性分析[J];電子學報;1995年09期
10 周哲;;基于情感詞典和監(jiān)督學習的中文短評論情感分類[J];漳州師范學院學報(自然科學版);2013年04期
相關會議論文 前1條
1 李軍;孫金生;王執(zhí)銓;;模型參考神經(jīng)元控制[A];1996中國控制與決策學術年會論文集[C];1996年
相關博士學位論文 前3條
1 程圣軍;基于帶約束隨機游走圖模型的弱監(jiān)督學習算法研究[D];哈爾濱工業(yè)大學;2014年
2 孟佳娜;遷移學習在文本分類中的應用研究[D];大連理工大學;2011年
3 夏錚;基于圖和網(wǎng)絡的學習算法及其在系統(tǒng)生物學中的一些應用[D];浙江大學;2009年
相關碩士學位論文 前10條
1 劉錦文;基于新聞數(shù)據(jù)的中文人物社會關系抽取研究[D];中國科學技術大學;2016年
2 黃俏穎;基于多示例弱監(jiān)督學習的物體檢測和分類方法研究[D];哈爾濱工業(yè)大學;2016年
3 李濤;基于監(jiān)督學習的腫瘤特征基因選擇方法研究[D];河南師范大學;2016年
4 程佩哲;基于監(jiān)督學習的多樣化推薦算法研究[D];山東大學;2017年
5 郭佳騁;監(jiān)督學習的話題模型[D];上海交通大學;2010年
6 戴衛(wèi)特;監(jiān)督學習算法在預測太陽能生產(chǎn)中的應用[D];中南大學;2014年
7 張從樂;基于知識型數(shù)據(jù)的監(jiān)督學習[D];上海交通大學;2008年
8 楊杰;監(jiān)督主題模型的研究與應用[D];華中科技大學;2011年
9 李鋼;代價敏感的支持向量機監(jiān)督學習研究[D];南京師范大學;2007年
10 姚娜娜;基于機器學習的產(chǎn)品評論情感分類研究[D];首都師范大學;2013年
,本文編號:2227514
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2227514.html