基于機(jī)器視覺(jué)的交通壓線判別方法研究
[Abstract]:Traffic is the support of urban development, which is related to all aspects of people's life. Traffic criterion is the foundation of traffic development. With the development of science and technology, intelligent transportation begins to enter people's life. Based on the development of Intelligent Transportation system (ITS), this paper makes a deep research on the traffic scene vehicle line breaking rules and regulations, combines the current mature image processing and machine learning technology, studies the separation of the vehicle foreground in the video. The detection of road route, the judgment of vehicle pressure line and the detection technology of license plate in video stream. In this paper, based on Gao Si's background modeling theory and CodeBook modeling method, Hough transform line detection and support vector machine (SVM), vehicle information acquisition after traffic line detection and detection is studied. The main contents of this paper are as follows: (1) in image preprocessing, the HSV color model is analyzed; the equalization technology is used for the image, and different equalization range is set for different images; several filtering and denoising techniques are studied. In this paper, the effective bilateral filtering for traffic images is used, several edge detection techniques are experimented, and finally the Canny operator edge detection algorithm is selected to segment the image. (2) the binarization threshold of the image is selected and studied by two methods. Finally, we use the method of image segmentation to obtain local threshold and then combine the image binarization. For the segmentation of video vehicle foreground, we study the hybrid Gao Si background modeling and CodeBook algorithm, respectively. Finally, the CodeBook algorithm is used as the segmentation method of the experiment, and the results are processed. The effective foreground range of the vehicle is obtained by using the expansion algorithm and the overflowing filling technique. (3) the lane line is detected by using the Hough transform. The results are processed to obtain the effective lane position; the moment feature and quadrilateral contour are studied to obtain the effective range of the vehicle contour; the vehicle feature is used to judge the vehicle line. And summarizes the process of line pressing. (4) aiming at a wide range of traffic vision, the support vector machine (SVM) plus image HOG feature is proposed to detect the license plate area in the image, and a large number of vehicle image data are used to carry out the experiment. The algorithm is used to obtain an efficient classification model and to achieve license plate location search in a wide range of visual regions.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐淵;許曉亮;李才年;姜梅;張建國(guó);;結(jié)合SVM分類器與HOG特征提取的行人檢測(cè)[J];計(jì)算機(jī)工程;2016年01期
2 彭紅;肖進(jìn)勝;程顯;李必軍;宋曉;;基于擴(kuò)展卡爾曼濾波器的車道線檢測(cè)算法[J];光電子·激光;2015年03期
3 王海;蔡英鳳;林國(guó)余;張為公;;基于方向可變Haar特征和雙曲線模型的車道線檢測(cè)方法[J];交通運(yùn)輸工程學(xué)報(bào);2014年05期
4 陸化普;李瑞敏;;城市智能交通系統(tǒng)的發(fā)展現(xiàn)狀與趨勢(shì)[J];工程研究-跨學(xué)科視野中的工程;2014年01期
5 王建華;徐貴力;糜長(zhǎng)軍;趙敏;田裕鵬;王彪;徐培智;;車輛壓線檢測(cè)方法[J];電子科技;2013年02期
6 劉松濤;殷福亮;;基于圖割的圖像分割方法及其新進(jìn)展[J];自動(dòng)化學(xué)報(bào);2012年06期
7 郭小春;王綿;;車牌自動(dòng)識(shí)別系統(tǒng)分析[J];泰山鄉(xiāng)鎮(zhèn)企業(yè)職工大學(xué)學(xué)報(bào);2011年03期
8 顧亞祥;丁世飛;;支持向量機(jī)研究進(jìn)展[J];計(jì)算機(jī)科學(xué);2011年02期
9 楊喜寧;段建民;高德芝;鄭榜貴;;基于改進(jìn)Hough變換的車道線檢測(cè)技術(shù)[J];計(jì)算機(jī)測(cè)量與控制;2010年02期
10 廖斌;陳尚鋒;肖山竹;盧煥章;;局部矩不變量輪廓圖像角點(diǎn)檢測(cè)[J];計(jì)算機(jī)應(yīng)用;2006年S2期
相關(guān)博士學(xué)位論文 前2條
1 田鵬輝;視頻圖像中運(yùn)動(dòng)目標(biāo)檢測(cè)與跟蹤方法研究[D];長(zhǎng)安大學(xué);2013年
2 佟守愚;基于視頻技術(shù)的交通違章檢測(cè)與識(shí)別理論及方法研究[D];吉林大學(xué);2006年
相關(guān)碩士學(xué)位論文 前5條
1 慕春雷;基于HOG特征的人臉識(shí)別系統(tǒng)研究[D];電子科技大學(xué);2013年
2 滕星;圖像處理技術(shù)在車輛檢測(cè)系統(tǒng)中的應(yīng)用[D];浙江工業(yè)大學(xué);2012年
3 史琳琳;車牌識(shí)別中車牌定位技術(shù)的研究[D];東華大學(xué);2012年
4 黃春賢;基于視頻的車輛違禁壓線檢測(cè)的研究與實(shí)現(xiàn)[D];電子科技大學(xué);2011年
5 孟濤;車牌識(shí)別關(guān)鍵技術(shù)的研究與實(shí)現(xiàn)[D];華中科技大學(xué);2006年
,本文編號(hào):2225852
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2225852.html