一種基于上下文的推薦算法的研究
[Abstract]:In recent years, with the development of the Internet, online shopping has become an indispensable existence in people's lives, and with the increase of the number of users and items in e-commerce websites, How to quickly recommend items of interest to users has become an urgent problem. The traditional recommendation algorithm pays more attention to the user's score and makes insufficient use of the user's context information. Based on the in-depth study of the existing personalized recommendation technology, this paper aims at the user's context situation. A context-based collaborative filtering recommendation algorithm is studied and designed. Firstly, this paper describes various recommendation technologies, especially collaborative filtering technologies, which are commonly used in personalized recommendation systems, and fully understands the principle and classification of collaborative filtering algorithms. The process of several classical algorithms is introduced in detail, and the advantages and disadvantages of these algorithms are analyzed. Then it introduces the relevant technology of context-aware recommendation system, and finally introduces the commonly used quality evaluation methods of recommendation algorithms. Secondly, a context similarity calculation method with context weight is proposed. Aiming at the shortcomings of existing context introduction methods, a context introduction method combining context prefiltering and context modeling is proposed. An improved Slope One algorithm based on context similarity is proposed to reduce the data sparsity and reduce the data sparsity in order to reduce the adverse effect of data sparsity on the algorithm. Thirdly, through the research of the classical collaborative filtering recommendation algorithm, the shortcomings of the traditional collaborative filtering algorithm are found. A collaborative filtering recommendation algorithm based on the context similarity is proposed. Compared with the traditional recommendation system, it is more accurate to mine user interest preference by using context similarity, which improves the recommendation accuracy to a great extent. Finally, the performance of the improved model and algorithm is verified by experiments, and compared with other algorithms, the evaluation results are analyzed and the results show that the proposed algorithm has a better prediction effect to a certain extent. At the same time, the performance of the algorithm on different data sets is tested, and the robustness of the algorithm is verified. This research can improve the efficiency of collaborative filtering recommendation algorithm, and provide some theoretical and methodological support for the application of personalized recommendation technology.
【學位授予單位】:燕山大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.3
【相似文獻】
相關(guān)期刊論文 前10條
1 李穎基,彭宏,鄭啟倫,曾煒;自動分層推薦算法[J];計算機應用;2002年11期
2 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機系統(tǒng)應用;2006年10期
3 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計算機應用;2007年06期
4 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進[J];計算機應用與軟件;2008年09期
5 張立燕;;一種基于用戶事務模式的推薦算法[J];福建電腦;2009年03期
6 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
7 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強;;智能博物館環(huán)境下的個性化推薦算法[J];計算機工程與應用;2010年19期
8 王文;;個性化推薦算法研究[J];電腦知識與技術(shù);2010年16期
9 張愷;秦亮曦;寧朝波;李文閣;;改進評價估計的混合推薦算法研究[J];微計算機信息;2010年36期
10 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機工程與應用;2011年16期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學術(shù)會議論文集(技術(shù)報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機應用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學術(shù)會議論文集(技術(shù)報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務個性化推薦系統(tǒng)[A];社會經(jīng)濟發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學會第17屆學術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡的含時推薦算法[A];第五屆全國復雜網(wǎng)絡學術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2224499
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2224499.html