基于簡(jiǎn)單用戶交互的單張圖像材質(zhì)外觀建模方法
[Abstract]:With the rapid development of computer graphics and computer vision, advanced image editing technology has developed very rapidly in recent years. More and more research has begun to focus on the understanding of image content, such as image model material and surface structure information. This paper provides a convenient and efficient way to obtain material and appearance models from a single photo only through simple user interaction. For a picture of near-plane material under arbitrary illumination, we can obtain the material information of the model (including diffuse reflectivity, mirror reflectivity) by using only a small amount of user interaction to constrain the local information. Roughness), the normal vector information for each pixel on the picture. And the calculated material model can be rendered under any given light source. The algorithm is mainly divided into four steps: first, removing the highlights and shadows on the input images, and then converting the images into diffuse reflection images by using similar fragments, and then decomposing the obtained images into reflectivity maps and shadow images through intrinsic decomposition. Due to the inherent ill-posed problem of the basic decomposition algorithm, it is difficult to deal with the local details with complex reflectivity change and shadow variation. In this paper, two kinds of coupled information are distinguished in these areas by adding constraints with brush. Secondly, the shaded image is used as input, and the normal vector information and illumination information are optimized simultaneously by the way of joint optimization. Finally, through the reflectivity image and the material information provided by the user, the material modeling of each pixel of the whole image is carried out. At the same time, we provide a convenient graphical interface for users to use, which can make the user's interaction easier to operate, and can view the intermediate results in real time, and optimize the results according to the characteristics of the picture itself. The experimental results show that our algorithm can retain more detailed results in the process of geometric modeling and material modeling when dealing with images under complex illumination.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫英皓;唐棣;;一種有效的交互式圖像局部?jī)?nèi)容放大方法[J];計(jì)算機(jī)工程與應(yīng)用;2012年12期
2 李瑞帥;余淑華;潘凱;王圓;;圖像特征金字塔快速計(jì)算方法[J];電子世界;2014年07期
3 曾喜良;王金娟;;指紋分割的塊圖像梯度因子聚類法[J];計(jì)算機(jī)與數(shù)字工程;2008年07期
4 劉陳;王欣欣;李鳳霞;趙相坤;;一種快速保邊的圖像對(duì)象分割方法[J];北京理工大學(xué)學(xué)報(bào);2010年02期
5 朱薇;劉利剛;;圖像適應(yīng)算法中非冗余顯著圖的計(jì)算[J];中國(guó)圖象圖形學(xué)報(bào);2011年08期
6 柳有權(quán);吳宗勝;韓紅雷;吳恩華;;線條增強(qiáng)的建筑物圖像抽象畫生成[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2013年09期
7 吳駿,唐紅梅,肖志濤,賈志成;一種基于相位信息的圖像對(duì)稱性檢測(cè)方法[J];信號(hào)處理;2004年01期
8 邵靜;高雋;趙瑩;張旭東;;一種基于圖像固有維度的感知物體檢測(cè)方法[J];儀器儀表學(xué)報(bào);2008年04期
9 潘如如;高衛(wèi)東;;高緊度機(jī)織物圖像傾斜的自動(dòng)糾正[J];紡織學(xué)報(bào);2009年10期
10 劉貴喜,趙曙光,楊萬(wàn)海;基于梯度塔形分解的多傳感器圖像融合[J];光電子·激光;2001年03期
相關(guān)會(huì)議論文 前5條
1 張一鳴;劉亞t,
本文編號(hào):2201073
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2201073.html