白背飛虱智能識別系統(tǒng)的設(shè)計與實現(xiàn)
[Abstract]:Rice is the most important food crop in China and plays a key role in agricultural production and food security. Sogatella furcifera (Horvath) is one of the main pests affecting the high and stable yield of rice. Therefore, it is necessary to accurately monitor and predict the population of the white-backed planthopper. In order to obtain a clear image of the white-backed planthopper, a field insect image acquisition device is designed and built. The acquisition device is mainly composed of acquisition device machinery. The mechanical platform of the acquisition device is composed of a base, a collection table and a transmission system. The base is an OOcm *100cm field-shaped frame, supporting the entire experimental platform. The size of the acquisition table is 120 cm *90cm, and a white screen is placed to provide a dormant place for insects such as white-backed planthopper. The transmission system is responsible for driving the camera 2. The system consists of a camera, telecentric lens, image acquisition card and RI ring cold light source. It is responsible for taking clear pictures of the white-backed planthopper. The motion control system is mainly composed of a servo motor, a servo driver and a PLC. The pulse is output by PLC. The servo driver drives the servo motor and drives the camera to move in X and Y directions in two-dimensional plane, and triggers the camera to scan and photograph the whole curtain orderly, and finally obtains pictures of the white-backed planthopper insects in the natural state. The color (blue component B = 130) threshold segmentation is used to obtain the binary image of the insect image after filtering. Then the binary image of the back region and the gray image of the back region of the single insect are extracted. The size and color components of the white-backed planthopper are statistically analyzed, and the single insect image with obvious non-white-backed planthopper is removed. Then the invariant moments and two-dimensional image are used. Fourier spectral data describe the geometry of insects. The color and texture of insects are 88 features. Seven moment invariants and l *l (l=1,2,..., 9) two-dimensional Fourier spectral features are combined as input variables to establish a white-backed planthopper identification model based on support vector machine. This method can automatically identify white backed planthopper in the field.
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;S435.112.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳秋琳;胡高;陸明紅;王標(biāo);朱秀秀;粟芳;張仲剛;翟保平;;湖南白背飛虱前期遷入種群中小尺度蟲源地及降落機(jī)制[J];生態(tài)學(xué)報;2015年22期
2 任靜;周華;郭超;王妍;梅再歡;;結(jié)合FFT和Gabor濾波器的織物紋理特征提取方法[J];浙江理工大學(xué)學(xué)報;2015年01期
3 何忠全;陳德西;封傳紅;陸明紅;向運(yùn)佳;劉萬才;;水稻主要害蟲發(fā)生區(qū)劃研究[J];西南農(nóng)業(yè)學(xué)報;2014年05期
4 呂進(jìn);祝增榮;婁永根;程家安;;稻飛虱災(zāi)變和治理研究透析[J];應(yīng)用昆蟲學(xué)報;2013年03期
5 劉功朋;張玉燭;黃志農(nóng);陳愷林;劉洋;朱國奇;方寶華;;水稻牛蛙生態(tài)種養(yǎng)對稻飛虱防效及水稻產(chǎn)量的影響[J];中國生物防治學(xué)報;2013年02期
6 周游;龐全;;傅里葉頻譜徑角特征的植物相似性[J];計算機(jī)系統(tǒng)應(yīng)用;2012年11期
7 張建華;冀榮華;袁雪;李慧;祁力鈞;;基于徑向基支持向量機(jī)的棉花蟲害識別[J];農(nóng)業(yè)機(jī)械學(xué)報;2011年08期
8 趙文倉;王軍欣;;雜草種子視覺不變特征提取及其種類識別[J];農(nóng)業(yè)工程學(xué)報;2011年03期
9 李先鋒;朱偉興;紀(jì)濱;劉波;;基于特征優(yōu)化和LS-SVM的棉田雜草識別[J];農(nóng)業(yè)機(jī)械學(xué)報;2010年11期
10 韋雪青;溫俊寶;趙源吉;許志春;;害蟲聲音監(jiān)測技術(shù)研究進(jìn)展[J];林業(yè)科學(xué);2010年05期
,本文編號:2193501
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2193501.html