基于數(shù)字圖像處理的摘錠磨損程度定量分析研究
[Abstract]:As an important working part of cotton picking machine, ingot picking has a lot of quantity and complex service conditions. In the working state of picking ingot and seed cotton, cotton straw is in direct contact with cotton straw, and long time friction causes wear on the surface of pick ingot hook tooth. At present, the wear degree of picking ingot mainly depends on manual judgment. This method is not only low efficiency, but also easy to miss detection. Moreover, there is no uniform standard, which affects the normal maintenance and maintenance of the spindles. Therefore, this paper studies the quantitative determination method of the wear degree of the spindles based on the digital image processing technology to improve the accuracy of the determination of the wear degree of the spindles. It is of great significance to provide a large amount of data reference for the replacement standard after testing wear and tear spindles. It is of great significance to make maintenance plans and prepare maintenance resources (such as spare parts). In this paper, the characteristic information of the contour of the hook teeth is obtained by digital image processing technology. The curve of wear time and wear degree is obtained by using SPSS software, and the quantitative expression of wear degree is realized. The range of preventive maintenance of spindles is determined, which provides a theoretical study for the classification of wear of spindles. The specific research contents and conclusions are as follows: 1. Research on extracting contour information of ingot hook teeth based on digital image processing technology. A collection system is set up which is suitable for collecting the outline of the hook teeth, and the hardware equipments of the system are determined. The algorithm of image enhancement, edge detection and feature extraction in digital image processing system is determined. Finally, the pixel area difference (35) S of the unworn and worn ingots is obtained, and the quantitative expression of wear degree. 2. The statistical analysis of wear degree is realized. The data of 120 groups of wear ingot samples were obtained, the corresponding curves were obtained by SPSS software analysis, and the warning line and critical line of wear degree of picking ingot were determined by combining with the grade standard of artificial subjective judgment. When the wear degree of the spindles is between the warning line and the critical line, it is considered as the preventive maintenance. The quantitative expression of wear degree of spindles is obtained by digital image processing technology, which replaces artificial subjective testing, and according to two reference lines of preventive maintenance, it is known that the spindles are in service and the future service time of the spindles is predicted. Thus provides the data reference for the spare parts management of the spindles.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S225.911;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 越琳;高麗燕;;直方圖分割耦合裁剪控制均衡化的圖像增強算法[J];計算機工程與設(shè)計;2017年02期
2 鄒yN;;SPSS軟件單因素方差分析的應(yīng)用[J];價值工程;2016年34期
3 張璐;劉清;侯致武;;使用SPSS進行單因素方差分析[J];現(xiàn)代商貿(mào)工業(yè);2016年32期
4 劉璐潔;符楊;馬世偉;許偉欣;;基于可靠性和維修優(yōu)先級的海上風(fēng)電機組預(yù)防性維護策略優(yōu)化[J];中國電機工程學(xué)報;2016年21期
5 蘇秀紅;謝惠英;王豐青;雷敬衛(wèi);王麗娜;謝彩俠;;基于近紅外光譜技術(shù)的黃柏藥材定量分析[J];中國實驗方劑學(xué)雜志;2016年08期
6 黃振;欒慶先;;數(shù)字圖像分析技術(shù)定量分析牙菌斑的效果評價[J];北京大學(xué)學(xué)報(醫(yī)學(xué)版);2016年02期
7 劉璐潔;符楊;馬世偉;趙華;;基于運行狀態(tài)監(jiān)測與預(yù)測的海上風(fēng)機維護策略[J];電網(wǎng)技術(shù);2015年11期
8 石桂名;魏慶濤;孟繁盛;;基于Canny算子的圖像邊緣檢測算法[J];現(xiàn)代電子技術(shù);2015年12期
9 張岳君;陸志強;;一種基于設(shè)備運行的預(yù)防性維護與生產(chǎn)批量聯(lián)合決策模型[J];計算機集成制造系統(tǒng);2014年07期
10 王兆文;李浩;黃都;黃榮華;丁紅元;;基于Matlab/GUI的汽油機缸內(nèi)直接噴霧圖像處理方法[J];農(nóng)業(yè)機械學(xué)報;2013年09期
相關(guān)博士學(xué)位論文 前3條
1 沈長青;旋轉(zhuǎn)機械設(shè)備關(guān)鍵部件故障診斷與預(yù)測方法研究[D];中國科學(xué)技術(shù)大學(xué);2014年
2 田裕鵬;紅外輻射成像無損檢測關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2009年
3 陳琦;基于可靠性的設(shè)備維護優(yōu)化研究[D];天津大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 屈冠彤;基于圖像處理技術(shù)的光柵碼道缺陷檢測[D];哈爾濱理工大學(xué);2016年
2 邵珠慶;機器視覺在列車圓錐滾子軸承檢測中的應(yīng)用[D];內(nèi)蒙古科技大學(xué);2015年
3 余躍杭;基于機器視覺的密封圈檢測系統(tǒng)研發(fā)[D];廣東工業(yè)大學(xué);2015年
4 宋小潞;基于大氣物理模型的單幅圖像去霧算法研究[D];華南理工大學(xué);2015年
5 肖媛;文本圖像復(fù)原方法的研究[D];昆明理工大學(xué);2015年
6 易貞弟;基于機器視覺的零件表面缺陷檢測技術(shù)研究[D];沈陽理工大學(xué);2015年
7 李翠;霧天降質(zhì)圖像自適應(yīng)清晰化處理算法的設(shè)計及實現(xiàn)[D];北京交通大學(xué);2014年
8 殷軍勇;基于MATLAB槍械內(nèi)壁瑕疵檢測系統(tǒng)研究[D];中北大學(xué);2014年
9 葛恒赫;基于機器視覺的外螺紋表面缺陷檢測技術(shù)研究[D];重慶大學(xué);2014年
10 王鴻東;船舶備品備件綠色更換策略[D];上海交通大學(xué);2014年
,本文編號:2187071
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2187071.html