基于敏感路徑識(shí)別的安卓應(yīng)用安全性分析方法
[Abstract]:With the rapid improvement of mobile phone hardware and the improvement of mobile network environment quality, mobile phones are widely used in daily life. The high popularity of mobile phones has led to the prosperity of mobile phone application market, but also brought a large number of malicious mobile phone applications. Compared with iOS system, Android system is more open and has a large number of third-party markets with inadequate audit mechanism, which makes Android platform subject to more malicious applications. Android system security is closely watched by Android users, Android malicious application detection has become a hot issue of current research. There are four main methods to detect malicious applications: feature-based methods, static analysis, dynamic analysis and machine learning methods. Among them, the feature-based methods are more traditional, which are restricted by the library which records the malicious applications'signatures; static analysis methods, which have high coverage, but can not handle dynamic loading and other technologies; dynamic analysis methods. Analysis shows that the detection cost is high and the coverage rate of the execution path is low; the detection results of machine learning methods depend on the selection of the application in the data set. Each of the four basic methods has its own shortcomings. Combining the basic methods to detect malicious applications is the current trend in this field. Sensitive paths in applications are the characteristics of security analysis for Android applications based on sensitive path recognition. Firstly, for malicious behaviors and their triggering conditions in malicious applications, we propose the concept of sensitive paths. The API function for permission permission permission checking and the function related to dynamic loading, and the corresponding sensitive trigger are the preconditions for the sensitive behavior to occur. If there is no user interaction-related behavior in the execution path aiming at the sensitive behavior, the entry point of the execution path is regarded as the sensitive trigger of the behavior. Then the user interaction function which directly leads to the execution of the sensitive behavior is regarded as a sensitive trigger, and the sensitive path can indicate the sensitive behavior and the action that triggers the behavior. FlowDroid tool is used to get the function call diagram of the application, and then combined with Intent Filter in Manifest file, the Intent parameters defined in the application are analyzed to build the function call relationship between the components of the application, thus completing the construction of the function call diagram between components. Thirdly, the sensitive path information extracted can not be directly made. In order to extract the characteristics of sensitive paths, we propose an abstract feature extraction method. For sensitive triggers, the trigger functions are divided into three categories: hardware trigger, user trigger and system trigger. For sensitive behaviors, the permission privileges required by the API functions are divided according to the permission privileges. Finally, we collected 493 APK files from Google Play, Peapod, Drebin and other sources, and carried out experiments on the data set composed of these applications, and proposed three research questions. Question: The effect of this method, the influence of different sensitive path descriptions on the results, and the influence of APK file size in the data set on the results. The experimental results show that the detection accuracy of the proposed method is higher than that of traditional methods, and the high sensitive path descriptions can improve the analysis efficiency but affect the detection. Accuracy, APK file size has a certain impact on the detection results.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP309;TP316
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李玉斌;API函數(shù)在Visual Basic中的應(yīng)用[J];電子科技;2005年03期
2 劉志芳;杜瑞慶;;淺談C語(yǔ)言中函數(shù)入門(mén)的講解[J];中國(guó)科技信息;2007年13期
3 張鋒;;淺談C++中的虛函數(shù)[J];湖南工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報(bào);2008年01期
4 李艷芳;;C語(yǔ)言函數(shù)的教學(xué)探討[J];湖南科技學(xué)院學(xué)報(bào);2009年12期
5 潘莉;;C語(yǔ)言函數(shù)教學(xué)探討[J];科技信息;2011年10期
6 黎路;;C語(yǔ)言函數(shù)教學(xué)探析[J];福建電腦;2011年11期
7 鄭麗英;C~(++)的多態(tài)機(jī)制及虛函數(shù)實(shí)現(xiàn)技術(shù)[J];甘肅工業(yè)大學(xué)學(xué)報(bào);1995年02期
8 郭招娣;API函數(shù)在VB中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用與軟件;2003年09期
9 石小云;C語(yǔ)言函數(shù)疑難問(wèn)題探索[J];株洲師范高等?茖W(xué)校學(xué)報(bào);2004年02期
10 沈曉紅;梁惺彥;;API函數(shù)在VB中的應(yīng)用[J];南通大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
相關(guān)會(huì)議論文 前1條
1 潘新紅;李慶忠;;用結(jié)構(gòu)化函數(shù)內(nèi)聯(lián)方法處理結(jié)構(gòu)上遞歸的NewsML查詢[A];全國(guó)第十五屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2003年
相關(guān)重要報(bào)紙文章 前6條
1 北京信息工程學(xué)院 張澤虹;C函數(shù)編程技巧[N];中國(guó)電腦教育報(bào);2006年
2 孫顧天 笨笨;深入理解函數(shù)和過(guò)程的精髓[N];電腦報(bào);2008年
3 ;名師講解經(jīng)典必考題型(二)[N];電腦報(bào);2005年
4 鄭州 牛霜霞;用MFC編制Windows打印程序[N];中國(guó)計(jì)算機(jī)報(bào);2000年
5 廣東 林志航;PB調(diào)用API函數(shù)技巧三則[N];電腦報(bào);2001年
6 航天部二院 陳峰;OpenGL中文本的顯示[N];計(jì)算機(jī)世界;2000年
相關(guān)碩士學(xué)位論文 前10條
1 劉陽(yáng);函數(shù)抽取重構(gòu)的檢測(cè)與分析[D];北京理工大學(xué);2015年
2 譚慧;內(nèi)核函數(shù)執(zhí)行時(shí)間和路徑的分析展現(xiàn)[D];北京理工大學(xué);2014年
3 繆小川;基于敏感路徑識(shí)別的安卓應(yīng)用安全性分析方法[D];南京大學(xué);2016年
4 楊羨環(huán);基于函數(shù)調(diào)用序列的漏洞定位方法研究[D];華中科技大學(xué);2013年
5 杜香燕;支持路由協(xié)議分析的內(nèi)核函數(shù)調(diào)用圖工具設(shè)計(jì)[D];首都師范大學(xué);2014年
6 湯衛(wèi)東;動(dòng)態(tài)函數(shù)調(diào)用分析及其在內(nèi)核模塊逆向工程的應(yīng)用[D];清華大學(xué);2014年
7 趙丹;基于靜態(tài)類型分析的Java程序函數(shù)調(diào)用圖構(gòu)建方法研究[D];湖南大學(xué);2006年
8 劉星;基于函數(shù)調(diào)用圖的惡意代碼同源分析[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
9 黃雙玲;面向C/C++程序函數(shù)調(diào)用關(guān)系的靜態(tài)分析方法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
10 張苗;進(jìn)化測(cè)試中嵌套If-Else和函數(shù)調(diào)用結(jié)構(gòu)的適值函數(shù)設(shè)計(jì)[D];西安電子科技大學(xué);2008年
,本文編號(hào):2185886
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2185886.html