彩色眼底圖像的血管分割方法研究
[Abstract]:Fundus vascular network is a deeper microvessel that can be observed directly by non-invasive method. Any systemic and hematologic lesions can lead to changes in the characteristics or morphology of the fundus microvessels. Ocular fundus image vascular segmentation is a key step in retinal image processing and analysis. It is of great significance for early prevention and diagnosis of systemic and hematologic diseases. The characteristics of retinal images are complex, and the automatic segmentation of fundus vessels is easy to be affected by the external conditions and the pathological changes themselves. Moreover, in the fundus images, the contrast between the tiny vessels and the background is low, which increases the difficulty of the segmentation of the fundus vessels. Therefore, improving the segmentation accuracy of ocular fundus vessels is an important research topic. This paper introduces the background and significance of the study of fundus vessels and the structural characteristics of the eyeball and retina, expounds the present situation of the research on the image processing of the fundus at home and abroad, and analyzes the properties and difficulties of the image of the blood vessel. In this paper, the image denoising of fundus and the segmentation of blood vessel in fundus image are studied. In this paper, the color fundus image in DRIVE standard image database and STARE standard image database are used for simulation experiment. The main works are as follows: (1) an improved bilateral filtering method for denoising fundus images with non-local mean filtering is proposed. In this paper, the denoising of fundus image is studied, and the two denoising methods of bilateral filtering and non-local mean filtering are deeply analyzed, and the advantages and disadvantages of the two methods are summarized. On the basis of this, an improved two-sided filtering method for denoising the fundus images with non-local mean filtering is improved. At the same time, the integral image operation method and the raised cosine function approximate gray similarity function are used to realize the fast operation of NLMF and BF, respectively. The simulation results show that the improved de-noising method has a good effect on the image denoising of the fundus, and the computation time is less. Based on the analysis and study of the fundus blood vessel segmentation method, a color fundus blood vessel segmentation method based on the level set function is studied in this paper. At first, adaptive histogram and two-dimensional Gabor transform are used to preprocess the fundus image, and then the level set theory of variable region fitting energy is used to simulate the blood vessel segmentation of the fundus image. According to the characteristics of fundus vessels, a color fundus image segmentation algorithm based on generalized linear model is improved. The algorithm firstly uses adaptive histogram equalization method to enhance retinal image, then uses two-dimensional Gabor wavelet to transform the fundus image. Finally, the generalized linear model (generalized linear model-GLM) classifier is used to segment the blood vessel of the fundus image.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R770.4;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭貝貝;易三莉;賀建峰;苗瑩;邵黨國(guó);;改進(jìn)的非局部均值濾波算法[J];計(jì)算機(jī)工程;2016年07期
2 孫偉峰;戴永壽;;采用多級(jí)殘差濾波的非局部均值圖像去噪方法[J];電子與信息學(xué)報(bào);2016年08期
3 吳一全;李海杰;宋昱;;基于引導(dǎo)核聚類的非局部均值圖像去噪算法[J];電子科技大學(xué)學(xué)報(bào);2016年01期
4 蔡斌;劉衛(wèi);鄭重;汪增福;;一種改進(jìn)的非局部均值去噪算法[J];模式識(shí)別與人工智能;2016年01期
5 李新春;于抒平;王波;;一種改進(jìn)的非局部均值算法[J];計(jì)算機(jī)工程與應(yīng)用;2016年05期
6 滕炯華;徐婧林;盧隆;周三平;韓軍偉;;基于自適應(yīng)參數(shù)回歸的非局部圖像濾波算法[J];系統(tǒng)工程與電子技術(shù);2015年02期
7 蔣輝;汪輝;張家樹;;梯度雙邊濾波的圖像去噪[J];計(jì)算機(jī)工程與應(yīng)用;2016年05期
8 單建華;;改進(jìn)權(quán)值函數(shù)的非局部均值去噪算法[J];中國(guó)圖象圖形學(xué)報(bào);2012年10期
9 周琳;沈建新;廖文和;王玉亮;;基于中心線提取的視網(wǎng)膜血管分割[J];生物醫(yī)學(xué)工程學(xué)雜志;2012年01期
10 王潤(rùn)民;姚暢;劉建勛;;基于Gabor小波的視網(wǎng)膜血管自動(dòng)提取研究[J];計(jì)算機(jī)工程與應(yīng)用;2011年18期
相關(guān)博士學(xué)位論文 前1條
1 湯敏;醫(yī)學(xué)圖像處理中關(guān)鍵技術(shù)研究及基礎(chǔ)應(yīng)用平臺(tái)研發(fā)[D];南京航空航天大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 陳倩清;基于黑森矩陣和多尺度分析的視網(wǎng)膜血管分割[D];華中科技大學(xué);2012年
2 尚翠娟;基于非下采樣Contourlet變換的眼底圖像去噪增強(qiáng)算法研究[D];山東大學(xué);2011年
3 顧晶龍;眼底照相機(jī)圖像處理與分析關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2010年
4 黃琳;眼底照相機(jī)中圖像處理技術(shù)的研究與實(shí)現(xiàn)[D];南京航空航天大學(xué);2009年
5 廖勇軍;視網(wǎng)膜圖像處理關(guān)鍵技術(shù)研究[D];重慶大學(xué);2008年
,本文編號(hào):2178496
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2178496.html