靜態(tài)多目標(biāo)軟件缺陷預(yù)測(cè)策略研究
[Abstract]:Software defect prediction is a technology to predict future development software defects based on historical data and the detected defects, such as defects. In this paper, the following work is done for software defect prediction: firstly, the research focuses on the two targets of defect detection rate and false alarm rate, which are mainly focused on the multi-objective particle swarm optimization algorithm, but this calculation is calculated. The classifier of the rule generating rules contains many rules, each rule is not evenly distributed, and the rules have repeated area coverage, and the rules that are generated need to be combined to predict the software defects. These problems affect the performance of the algorithm to a great extent. The individual current position of the cuckoo algorithm is the optimal location of individual history, which makes the rule distribution of the multi-objective algorithm more uniform and thus improves the performance of the algorithm. In order to verify the algorithm, eight data sets of the NASA database are selected and compared with the eight comparison algorithms. The experimental results are compared. It shows that the average performance of the MOOCS based multi target software defect prediction technology is better. Secondly, we analyze the distribution of the unbalance distribution of the number of code lines in the module of the six data sets of the NASA database. The results show that most of the software modules have less code lines (called small modules), and only a small number of modules have a long number of code lines. According to the research conclusion of Arisholm: the test resource size of the software module is proportional to the number of code lines in the software module, the false alarm rate generated by the large module in the defect prediction process is a serious waste of test resources. In order to reduce the resource waste caused by the large module misinformation, we put a data set in accordance with the code. The length is divided into large modules and small modules, and a support vector classifier is allocated each to reduce the waste of the overall test resources. In order to further verify the technical performance, the paper compares the algorithm with the nine algorithms. The results show the effectiveness of the software defect prediction technology based on the multi target dual support vector machine software. Finally, The multi target defect prediction based on dual support vector machine (SVM) needs to divide a data set into large modules and small modules based on the number of code lines. The ratio selection has a great influence on the effect of defect prediction. Therefore, we choose the proportion of five data sets by the golden segmentation method. The experimental results show that the ratio is in 40%-80%. The effect is better.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉望舒;陳翔;顧慶;劉樹(shù)龍;陳道蓄;;軟件缺陷預(yù)測(cè)中基于聚類分析的特征選擇方法[J];中國(guó)科學(xué):信息科學(xué);2016年09期
2 陳翔;顧慶;劉望舒;劉樹(shù)龍;倪超;;靜態(tài)軟件缺陷預(yù)測(cè)方法研究[J];軟件學(xué)報(bào);2016年01期
3 王男帥;薛靜鋒;胡昌振;單純;李志強(qiáng);;基于遺傳優(yōu)化支持向量機(jī)的軟件缺陷預(yù)測(cè)模型[J];中國(guó)科技論文;2015年02期
4 林開(kāi)標(biāo);馬櫻;胡建強(qiáng);朱順痣;;靜態(tài)代碼屬性與軟件模塊缺陷數(shù)的偏相關(guān)分析[J];廈門(mén)理工學(xué)院學(xué)報(bào);2014年05期
5 王洪坡;周紅建;王洪雷;;基于威布爾分布的嵌入式軟件安全性量化分析[J];計(jì)算機(jī)應(yīng)用與軟件;2014年04期
6 王洪坡;周紅建;王洪雷;;基于S曲線模型的航空裝備嵌入式軟件量化安全評(píng)估[J];計(jì)算機(jī)工程與科學(xué);2014年03期
7 尹然;丁曉明;李小亮;梅瑩;;基于SA-BP神經(jīng)網(wǎng)絡(luò)的軟件缺陷預(yù)測(cè)模型的研究[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年08期
8 于安雷;皮德常;;基于PSO-BP的軟件缺陷預(yù)測(cè)模型[J];計(jì)算機(jī)工程與應(yīng)用;2013年07期
9 仇晨曄;王春露;左興權(quán);方濱興;;基于K-Means全局引導(dǎo)策略的多目標(biāo)微粒群算法[J];北京郵電大學(xué)學(xué)報(bào);2012年05期
10 何亮;宋擒豹;沈鈞毅;;基于Boosting的集成k-NN軟件缺陷預(yù)測(cè)方法[J];模式識(shí)別與人工智能;2012年05期
相關(guān)博士學(xué)位論文 前2條
1 楊曉杏;基于度量元的軟件缺陷預(yù)測(cè)技術(shù)[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
2 馬櫻;基于機(jī)器學(xué)習(xí)的軟件缺陷預(yù)測(cè)技術(shù)研究[D];電子科技大學(xué);2012年
,本文編號(hào):2164739
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2164739.html