面向即時眾包協(xié)作的移動垂直應(yīng)用的設(shè)計與實現(xiàn)
[Abstract]:Crowdsourcing, as a new mode of social production, can greatly integrate social resources and create huge commercial value. With the development of Internet technology, crowdsourcing is no longer a simple enterprise behavior, but a socialized behavior of national cooperation. The rise of mobile Internet provides opportunities for the mobility and fragmentation of crowdsourcing collaboration, but at the same time challenges. The existing crowdsourcing collaboration applications present information directly after classification, which not only results in information overload, but also is difficult to quickly respond to users' real-time collaboration tasks in mobile scenarios. Based on the practical requirements, this paper introduces a recommendation system to solve the problems faced by collaborative applications in mobile scenarios. The primary goal of this application design is to design a recommendation engine architecture that supports complex machine learning algorithms and can respond to user requests in real time. By using distributed message system (Kafka) combined with the latest distributed parallel computing framework (Spark), high-performance memory database (Redis) and distributed NoSQL database (HBase), this paper designs and implements a three-segment hybrid recommendation engine named "On-Line, Near-Off-Line". The offline part updates the recommendation model by batch calculation, the near-line part incrementally calculates the asynchronous push recommendation results, and the online part filters and sorts the single task in response to the user's real-time request. The feasibility and rationality of the technical scheme are verified by experiments. Most of the existing collaborative activity recommendation algorithms are direct migration of traditional algorithms and do not fully consider the characteristics of collaborative activities in mobile scenarios. Mobile scene provides new information such as user location, user social relationship and so on. The crowdsourcing collaboration between users constitutes an event-based social network (EBSN). In this paper, the semantic features, location features and social impact of EBSN are analyzed, and the influence of integrating the above factors on the users' participation in collaborative activities is analyzed. A singular matrix decomposition algorithm based on neighborhood implicit factor is proposed. The experimental results show that compared with the traditional prediction model, the proposed model can effectively alleviate the cold start problem, can more accurately predict whether users will participate in the activities, and then recommend collaborative activities for users. Based on the above recommendation system architecture and recommendation algorithm, a mobile application is designed and implemented. The application can intelligently sort and recommend the order based on the user's interest and real-time context information, and can respond to the user's real-time cooperation demand, and effectively solve the problem of information overload in the mobile scene.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.3
【相似文獻】
相關(guān)期刊論文 前10條
1 趙景明;時永梅;;圖書館眾包模式的理論與實踐研究[J];圖書館理論與實踐;2011年08期
2 王晨郁;;一次“眾包”新聞實踐帶來的思考[J];中國記者;2012年07期
3 東方;;眾包在國外圖書館中的應(yīng)用及有益啟示[J];新世紀(jì)圖書館;2012年12期
4 鄧珊妮;陶景霞;;眾包在國外圖書館中的應(yīng)用及啟示[J];湖南社會科學(xué);2013年01期
5 吳金紅;陳強;張玉峰;;基于眾包的企業(yè)競爭情報工作模式創(chuàng)新研究[J];情報理論與實踐;2014年01期
6 陸丹;;互聯(lián)網(wǎng)時代下眾包風(fēng)險的識別與規(guī)避[J];物流工程與管理;2013年04期
7 宋愛嫻;;互聯(lián)網(wǎng)電子商務(wù)眾包模式在政府中的創(chuàng)新應(yīng)用研究[J];電腦知識與技術(shù);2013年05期
8 吳yP昕;王子謹(jǐn);;基于眾包的移動互聯(lián)信息傳播設(shè)計研究[J];現(xiàn)代傳播(中國傳媒大學(xué)學(xué)報);2013年10期
9 范麗娟;;眾包對圖書館的影響及其運用[J];圖書館建設(shè);2011年01期
10 張志強;逄居升;謝曉芹;周永;;眾包質(zhì)量控制策略及評估算法研究[J];計算機學(xué)報;2013年08期
相關(guān)會議論文 前10條
1 鐘耕深;朱雅杰;;基于眾包的商業(yè)模式優(yōu)化[A];第五屆(2010)中國管理學(xué)年會——組織與戰(zhàn)略分會場論文集[C];2010年
2 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2007年
3 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機應(yīng)用技術(shù)交流會論文集[C];2008年
4 任延靜;林麗慧;;眾包平臺創(chuàng)新競賽中加價延期機制采納決策的研究[A];第八屆(2013)中國管理學(xué)年會——信息管理分會場論文集[C];2013年
5 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
6 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務(wù)個性化推薦系統(tǒng)[A];社會經(jīng)濟發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第17屆學(xué)術(shù)年會論文集[C];2012年
7 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時推薦算法[A];第五屆全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會議論文(摘要)匯集[C];2009年
8 梁莘q,
本文編號:2151590
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2151590.html