基于多尺度變換和稀疏表示的圖像融合算法研究
[Abstract]:Image fusion is an effective synthesis of a high quality image from the multiple source images obtained from the same scene on the same scene. This image is more abundant, accurate and reliable than the source image information captured by a single sensor. It is beneficial to human perception, computer recognition, detection and other follow-up work. The image fusion algorithm of scale transformation and sparse representation. First, on the basis of reviewing several popular multi-scale transform fusion algorithms, the medical image fusion algorithm based on translation invariant shear wave transform is studied. Secondly, the translation and non lower transformation of the translational invariant double tree complex shear wave are constructed for the shortcomings of the traditional wavelet. The properties of the four element number shear wave transform are sampled. Finally, by analyzing the shortcomings of the current fusion rules, some improved fusion rules are proposed, and the new multiscale transformation is combined, and the image fusion algorithm based on the translation invariant double tree complex shear wave transform and the non lower sample four element number shear wave transform domain is proposed respectively. The main contents of this paper are as follows: 1. the development status of image fusion at home and abroad and the evaluation criteria for the performance of image fusion in image fusion are reviewed. The concepts and related theories, such as translation invariant shear wave, double tree complex wavelet, four element wavelet, compression perception, sparse representation and pulse coupling God channel network, are introduced in order to improve the medical map.2. Like the quality of fusion, a medical image fusion algorithm based on translation invariant shear wave transformation and compression perception is proposed. First, the translational invariant shear wave transform is used to decompose the source medical images. Secondly, the frequency and regional energy of the subbands are extracted from the low frequency band, and the similarity degree of each subband is combined. In the frequency subband, considering the large amount of coefficient data, the fusion of compressed sensing is introduced in the pulse coupled neural network. Finally, the fusion subband is converted to the fused image by inverse transformation. The experimental results show that the algorithm not only improves the quality of the fused image, but also improves the operation efficiency of the algorithm.3. for the deficiency of the traditional wavelet transform. A translation invariant double tree complex shear wave transform is constructed by cascade double tree complex wavelet transform and shear wave filter banks. An infrared and visible light image fusion algorithm based on translation invariant double tree complex shear wave transformation and sparse representation is proposed. First, the morphological transformation of the source image is carried out, and then the translation invariant double tree complex shear is used. The shear wave transform is used to decompose the processed images; secondly, for the low frequency subband, the sparse processing is done first, then the Laplasse energy of the sparse coefficient and the S function are combined adaptively. The fusion rules of the adaptive double channel pulse coupling neural network are given for the high-frequency subband. Finally, the translation invariant double tree complex shear is used. The experimental results show that the proposed algorithm can effectively improve the clarity and texture features of the fused image. It is superior to the traditional infrared and visible image fusion algorithm 4. for the shortcomings of the traditional wavelet transform. Through the cascade four element wavelet transform and the shear wave filter bank, the non down recovery is constructed. A multi focus image fusion algorithm based on the non subsampled four element number shear wave transform domain is proposed. First, the multi focus image is decomposed by the non subsampled four element number shear wave transform. Secondly, the low frequency subband is used in the training dictionary for the sparse processing, and the 1L norm of the sparse coefficient is combined with the 1L norm of the sparse coefficient. The domain energy and the S function are fused; the frequency of the subband, the edge energy and the similarity matching degree are fused for the high-frequency subband. Finally, the fusion coefficients are changed to the fusion image by inverse transformation. The experimental results show that the algorithm improves the edge and detail information of the fused image, which is better than the classical fusion algorithm.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【相似文獻】
相關(guān)期刊論文 前10條
1 陳虎義;多種圖像融合[J];影像技術(shù);2000年04期
2 田思;張俊舉;袁軼慧;常本康;;圖像融合的開窗處理技術(shù)研究[J];兵工學報;2009年04期
3 吳仰玉;紀峰;常霞;李翠;;圖像融合研究新進展[J];科技創(chuàng)新導報;2013年01期
4 韓瑜;蔡云澤;曾清;;圖像融合的客觀質(zhì)量評估[J];指揮控制與仿真;2013年04期
5 王憶鋒,張海聯(lián),李燦文,,李茜;夜視圖像融合研究的進展[J];紅外與激光工程;1998年02期
6 朱煉;孫楓;夏芳莉;韓瑜;;圖像融合研究綜述[J];傳感器與微系統(tǒng);2014年02期
7 劉志鏡,楊海英,張小平;基于空域中的圖像融合算法研究[J];計算機工程與設(shè)計;2002年09期
8 夏明革,何友,唐小明,夏仕昌;圖像融合的發(fā)展現(xiàn)狀與展望[J];艦船電子工程;2002年06期
9 溫學兵;紀景娜;;一種基于圖像融合的混合去噪方法[J];綏化學院學報;2005年06期
10 苗啟廣;王寶樹;;圖像融合的非負線性混合模型與算法研究[J];計算機科學;2005年09期
相關(guān)會議論文 前10條
1 劉德坤;龔俊斌;馬佳義;田金文;;一種車載的紅外與微光圖像融合系統(tǒng)設(shè)計[A];第九屆全國光電技術(shù)學術(shù)交流會論文集(上冊)[C];2010年
2 王芳;吳謹;;基于小波的圖像融合算法研究[A];2011年全國通信安全學術(shù)會議論文集[C];2011年
3 胡學龍;沈潔;;一種基于中值金字塔的圖像融合算法[A];2008年全國開放式分布與并行計算機學術(shù)會議論文集(上冊)[C];2008年
4 趙向陽;杜利民;;基于數(shù)據(jù)提純的圖像融合[A];現(xiàn)代通信理論與信號處理進展——2003年通信理論與信號處理年會論文集[C];2003年
5 楊志;毛士藝;陳煒;;基于多分辨率局部峰度熵的魯棒圖像融合算法[A];中國航空學會信號與信息處理專業(yè)全國第八屆學術(shù)會議論文集[C];2004年
6 王曾敏;楊兆選;丁學文;何英華;陳楊;于淵;;圖像融合與壓縮算法在動態(tài)交通信息服務系統(tǒng)中的應用[A];第一屆建立和諧人機環(huán)境聯(lián)合學術(shù)會議(HHME2005)論文集[C];2005年
7 潘泉;趙永強;張洪才;;基于像素層圖像融合的偏振圖像計算方法研究[A];第二屆全國信息獲取與處理學術(shù)會議論文集[C];2004年
8 陳懷新;吳必富;;機載成像偵察的圖像融合技術(shù)[A];中國雷達行業(yè)協(xié)會航空電子分會暨四川省電子學會航空航天專委會學術(shù)交流會論文集[C];2005年
9 成尚利;呂中偉;何俊民;;基于小波變換的PET/CT圖像融合[A];第四屆全國中青年核醫(yī)學學術(shù)會議論文匯編[C];2008年
10 湯志偉;王建國;趙志欽;黃順吉;;基于小波變換的圖像融合算法[A];第九屆全國信號處理學術(shù)年會(CCSP-99)論文集[C];1999年
相關(guān)博士學位論文 前10條
1 王春萌;多曝光圖像融合關(guān)鍵技術(shù)的研究[D];山東大學;2015年
2 費春;基于智能優(yōu)化和視覺顯著性的圖像融合研究[D];電子科技大學;2015年
3 段昶;基于Shearlet的圖像融合研究[D];電子科技大學;2014年
4 史立芳;大視場人工復眼成像結(jié)構(gòu)研究與實驗[D];電子科技大學;2014年
5 高國榮;基于Shearlet變換的圖像融合與去噪方法研究[D];西安電子科技大學;2015年
6 王娟;基于城鎮(zhèn)影像的Contourlet域圖像融合算法研究[D];成都理工大學;2015年
7 楊金庫;基于二維經(jīng)驗模態(tài)分解的圖像融合算法研究[D];西北工業(yè)大學;2016年
8 李奕;圖像融合的若干關(guān)鍵技術(shù)研究[D];江南大學;2015年
9 宋樂;異源圖像融合及其評價方法的研究[D];天津大學;2008年
10 胡旺;圖像融合中的關(guān)鍵技術(shù)研究[D];四川大學;2006年
相關(guān)碩士學位論文 前10條
1 段普宏;基于多尺度變換和稀疏表示的圖像融合算法研究[D];合肥工業(yè)大學;2017年
2 杜麗;基于RF5框架的多小波圖像融合系統(tǒng)的設(shè)計與開發(fā)[D];內(nèi)蒙古大學;2015年
3 王坤臣;基于二代Curvelet變換的圖像融合算法研究[D];南京理工大學;2015年
4 李寧;多DSP并行系統(tǒng)圖像融合算法設(shè)計及優(yōu)化[D];南京理工大學;2015年
5 陳云川;紅外與微光融合的實時信號處理技術(shù)研究[D];南京理工大學;2015年
6 張澤;基于NSCT變換的壓縮感知圖像融合優(yōu)化算法研究[D];大連海事大學;2015年
7 陶媛媛;紅外與微光融合夜視系統(tǒng)性能評價[D];南京理工大學;2015年
8 李蕾;抗混疊輪廓波變換的性能研究及圖像融合去噪應用[D];山東大學;2015年
9 米艷芹;基于區(qū)域和多尺度的圖像融合算法研究[D];電子科技大學;2015年
10 唐詩;基于多尺度變換的無源毫米波圖像融合算法研究[D];電子科技大學;2014年
本文編號:2127467
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2127467.html