基于HSV空間再生稻植株與土壤背景圖像分割
發(fā)布時(shí)間:2018-07-03 04:20
本文選題:再生稻 + 農(nóng)田環(huán)境 ; 參考:《農(nóng)機(jī)化研究》2017年07期
【摘要】:針對(duì)再生稻收割機(jī)視覺(jué)導(dǎo)航的稻田圖像分割問(wèn)題,結(jié)合再生稻植株的生長(zhǎng)特點(diǎn)和再生稻避儕的要求,利用相機(jī)于農(nóng)田采集再生稻圖片,結(jié)合RGB、HSV、YCr Cb空間中的常用灰度化因子,進(jìn)行灰度化對(duì)比試驗(yàn)并分析其直方圖特征,得出在HSV空間的S分量灰度化;采用最大類間方差法(Otsu)得到初步分割閾值T,經(jīng)進(jìn)一步分析為保留較完整的不同成熟度再生稻植株特征,加入修正因子-a得到閾值T-a對(duì)圖像二值化;再通過(guò)數(shù)學(xué)形態(tài)學(xué),面積法過(guò)濾等后續(xù)處理,形成收割機(jī)行走的左右邊界區(qū)域。結(jié)果表明:處理1副像素419×310的圖像平均耗時(shí)0.053 s,可滿足今后的實(shí)時(shí)性要求,分割出的圖像基本上反應(yīng)了再生稻植株的走勢(shì)特征,與人眼判斷植株邊緣位置基本相符合。
[Abstract]:Aiming at the problem of rice field image segmentation based on visual navigation of ratooning rice harvester, combined with the growth characteristics of ratooning rice plant and the requirements of rooting rice peer-avoidance, the paper used camera to collect the images of ratooning rice in farmland, and combined with the commonly used grayscale factors in the space of RGB HSV and YCr CB. The contrast test of grayscale and the analysis of histogram feature are carried out, and the S component grayscale in HSV space is obtained. The initial segmentation threshold T was obtained by using the maximum inter-class variance method (Otsu). After further analysis, the threshold value T-a was obtained by adding the correction factor -a to preserve the complete plant characteristics of different maturity ratooning rice, and then the binary value of the image was obtained by mathematical morphology. Area filtering and other follow-up processing to form the left and right border area of the harvester walking. The results show that the average processing time of 1 pixel 419 脳 310 image is 0.053 s, which can meet the real-time requirements in the future. The segmented image basically reflects the trend characteristics of the regenerated rice plant and is basically consistent with the human eye in judging the edge position of the plant.
【作者單位】: 福建農(nóng)林大學(xué)機(jī)電工程學(xué)院;
【基金】:福建省自然科學(xué)基金項(xiàng)目(2016J01701) 福建農(nóng)林大學(xué)機(jī)械工程學(xué)科整體學(xué)科水平提升計(jì)劃項(xiàng)目(612014049)
【分類號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 高東旭;曹江濤;李平;;基于HSV空間陰影去除方法研究與應(yīng)用[J];電子設(shè)計(jì)工程;2014年13期
2 蔣崛;張小寧;梁志虎;劉純亮;;HSV空間中具有調(diào)整因子的膚色增強(qiáng)方法[J];真空科學(xué)與技術(shù)學(xué)報(bào);2011年05期
3 鄭利華;張亞紅;;一種基于HSV空間的人像高光區(qū)域自適應(yīng)修正方法[J];桂林航天工業(yè)高等專科學(xué)校學(xué)報(bào);2012年03期
4 劉艷英;凌朝東;;HSV空間的彩色多聚焦圖像融合[J];微型機(jī)與應(yīng)用;2014年08期
5 ;[J];;年期
相關(guān)碩士學(xué)位論文 前1條
1 賈驥;道路交通標(biāo)志檢測(cè)與識(shí)別算法研究[D];北京交通大學(xué);2015年
,本文編號(hào):2092373
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2092373.html
最近更新
教材專著