天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于機器視覺的芯棒缺陷檢測與分類算法研究

發(fā)布時間:2018-06-02 10:35

  本文選題:復合絕緣子芯棒 + 缺陷分割 ; 參考:《北京郵電大學》2016年碩士論文


【摘要】:基于視覺的缺陷檢測技術以其高準確度、高效率等優(yōu)勢在工業(yè)檢測領域被廣泛應用。復合絕緣子芯棒質(zhì)量是影響絕緣子質(zhì)量的重要因素,芯棒缺陷的檢測比較困難。傳統(tǒng)人工使用肉眼進行檢測的方法存在可靠性差,效率低下的等缺陷。將基于機器視覺的缺陷檢測技術應用于絕緣子芯棒自動缺陷檢測與分類,對于提高芯棒質(zhì)量檢測的效率和可靠性具有重要意義。論文研究基于視覺的芯棒缺陷檢測與分類算法并研制芯棒缺陷檢測軟件。論文針對芯棒的特點展開一系列算法研究。論文的主要工作如下:(1)針對芯棒缺陷的特點,研究了基于視覺顯著性模型的缺陷目標定位與分割算法,取得了良好的缺陷定位與分割效果。(2)基于不同的芯棒樣本,對芯棒缺陷區(qū)域的特征進行了分析,研究能夠標識芯棒缺陷的特征,包括缺陷區(qū)域的長寬比、方向、形心位置、矩形度、致密度、平均灰度值、灰度均方差。(3)基于BP神經(jīng)網(wǎng)絡對缺陷圖像進行分類。分析并確定了神經(jīng)網(wǎng)絡模型參數(shù)的選擇和訓練過程。(4)設計了芯棒缺陷檢測軟件系統(tǒng)的方案,并完成了缺陷檢測軟件系統(tǒng)的開發(fā)。
[Abstract]:Vision-based defect detection technology is widely used in the field of industrial detection because of its high accuracy and high efficiency. The quality of composite insulator mandrel is an important factor affecting the quality of insulator, and the detection of mandrel defects is difficult. The traditional manual inspection method with naked eye has some defects, such as low reliability and low efficiency. The application of machine vision based defect detection technology to the automatic defect detection and classification of insulator mandrel is of great significance for improving the efficiency and reliability of mandrel quality detection. In this paper, visual-based mandrel defect detection and classification algorithms are studied and a mandrel defect detection software is developed. In this paper, a series of algorithms are studied according to the characteristics of mandrel. The main work of this paper is as follows: (1) aiming at the characteristics of mandrel defects, a defect target localization and segmentation algorithm based on visual salience model is studied. A good defect localization and segmentation effect is obtained. The characteristics of mandrel defect region are analyzed, and the characteristics that can identify the mandrel defect are studied, including the aspect ratio, direction, centroid position, rectangle degree, density, average gray value, etc. Based on BP neural network, defect images are classified. The selection and training process of neural network model parameters are analyzed and determined. The scheme of mandrel defect detection software system is designed, and the development of defect detection software system is completed.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.41

【參考文獻】

相關期刊論文 前5條

1 熊建平;;基于計算機視覺的墻地磚表面缺陷檢測[J];電子測量技術;2015年05期

2 衛(wèi)蒙;常文革;;數(shù)學形態(tài)法在超寬帶SAR道路邊緣檢測中的應用[J];中國圖象圖形學報;2010年10期

3 周學成;羅錫文;嚴小龍;周荷琴;;基于遺傳算法的原位根系CT圖像的模糊閾值分割[J];中國圖象圖形學報;2009年04期

4 楊曉偉;閆麗;;基于模糊分割的支持向量機分類器[J];計算機工程與應用;2007年28期

5 盧明;馬曉久;閻東;李剛;;復合絕緣子芯棒脆斷原因分析[J];電瓷避雷器;2007年04期

相關博士學位論文 前1條

1 楊水山;冷軋帶鋼表面缺陷機器視覺自動檢測技術研究[D];哈爾濱工業(yè)大學;2009年



本文編號:1968446

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1968446.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶9fb98***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com