基于Haar特性的改進(jìn)HOG的人臉特征提取算法
發(fā)布時間:2018-05-08 16:51
本文選題:特征提取 + 人臉識別。 參考:《計算機(jī)科學(xué)》2017年01期
【摘要】:現(xiàn)有的大多數(shù)特征提取算法在提取人臉特征時,容易受到光照等外界因素的影響,從而導(dǎo)致后期人臉識別率下降。而方向梯度直方圖(Histogram of Oriented Gradient,HOG)具有較強(qiáng)的光照魯棒性,能夠很好地減少由光照帶來的干擾,但傳統(tǒng)HOG在計算梯度幅值和方向時只計算水平和垂直方向上4個像素點(diǎn)對中間像素的影響,當(dāng)外界環(huán)境變化時不能保證穩(wěn)定性,因此提出一種基于Haar特性的改進(jìn)HOG的人臉特征提取算法。該算法在計算梯度幅值和方向時考慮水平、垂直以及對角線上8個像素點(diǎn)對中間像素的影響,由于增加計算量導(dǎo)致特征提取時間也隨之增加,因此引入Haar,借助Haar型特征運(yùn)算簡單、快捷的特點(diǎn)設(shè)計4組Haar型特征編碼模式,按照改進(jìn)的HOG特征計算方式提取人臉特征。在有光照等外界因素影響的FERET人臉數(shù)據(jù)庫和Yale B擴(kuò)展的人臉測試庫中進(jìn)行實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明,與GFC,LBP和其他文獻(xiàn)中的HOG算法相比,該算法對光照具有更好的魯棒性,能夠在光照變化的環(huán)境下提高人臉識別率。該算法在FERET探測集fb,fc,dup1和dup2上的識別率分別為95.1%,80.9%,70.1%和63.2%,在Yale B中的識別率為89.1%。
[Abstract]:Most of the existing feature extraction algorithms are easy to be affected by external factors such as illumination when extracting face features, which leads to the decline of face recognition rate in the later stage. The histogram of Oriented gradient histogram has strong illumination robustness and can reduce the interference caused by illumination. However, the traditional HOG can only calculate the influence of 4 pixels in horizontal and vertical directions on the intermediate pixels in the calculation of gradient amplitude and direction, and can not guarantee the stability when the external environment changes. Therefore, an improved HOG based face feature extraction algorithm based on Haar characteristics is proposed. When calculating the magnitude and direction of gradient, the algorithm takes into account the influence of 8 pixels on the vertical and diagonal lines on the intermediate pixels, and the time of feature extraction increases with the increase of computation. Therefore, four groups of Haar type feature coding patterns are designed with the help of the simple and fast Haar type feature calculation, and the face features are extracted according to the improved HOG feature calculation method. Experiments are carried out in FERET face database and Yale B extended face test database with external factors such as illumination. The experimental results show that the algorithm is more robust to illumination than HOG algorithm in other literatures. It can improve the face recognition rate in the environment of changing illumination. The recognition rate of this algorithm on the FERET detection set fbbutu dup1 and dup2 is 95.1% and 63.2%, respectively. The recognition rate in Yale B is 89.1.
【作者單位】: 南京郵電大學(xué)計算機(jī)學(xué)院;
【分類號】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 江宇聞;朱思銘;;基于Overcomplete ICA的人臉特征提取[J];計算機(jī)科學(xué);2005年07期
2 陳鵬;;人臉特征提取方法的研究[J];中國水運(yùn)(理論版);2006年12期
3 魏冬冬;諶海新;聶鐵鑄;;人臉特征提取與識別技術(shù)研究[J];計算機(jī)與現(xiàn)代化;2007年03期
4 王宏勇;王青青;;三維人臉特征提取方法綜述[J];電子科技;2012年12期
5 王fE;楊光;;改進(jìn)的脈沖耦合神經(jīng)網(wǎng)絡(luò)人臉特征提取方法[J];計算機(jī)工程與應(yīng)用;2013年01期
6 宋宇,周激流,何坤,劉智明,黎奎;多尺度人臉特征提取[J];計算機(jī)應(yīng)用研究;2005年04期
7 陶宇權(quán);程德福;李成榮;徐U,
本文編號:1862197
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1862197.html
最近更新
教材專著